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Abstract

In functional encryption, keys are associated with functions, and ciphertexts with
messages. Decrypting a message with a key gives the evaluation of the associated
function on that message. We look at bounded-collusion functional encryption, where
the number of keys for which security is guaranteed is bounded, as it is possible to
realize using standard building blocks. For such schemes we aim to understand their
practicality for real-world applications.

There are some theoretical constructions of functional encryption, but few im-
plementations. We rectify this by creating the Framework for Investigating Func-
tional Encryption (FIFE). FIFE includes the first implementations for Sahai and
Seyalioglu’s one-key scheme (CCS 2010), and Gorbunov, Vaikuntanathan, and Wee’s
bounded-collusion scheme (CRYPTO 2012), and is easily extendable. We used FIFE
to evaluate their performance, and to measure the impact of using different public-
key or secret-key encryption schemes, bounds on collusion, and security levels, for
interesting classes of functions.
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Chapter 1

Introduction

By now, most people are familiar with the concept of public-key encryption. If Alice

publishes a public key associated with a secret key which she doesn’t share, anyone

who has the public key can encrypt data of their choosing, such that only Alice can

recover the data, even if others see the encrypted message [59]. This cryptographic

primitive, along with related work, has been widely used to create secure online

communication, online financial transactions, and private data storage, that enables

much of the current tech industry.

These uses of public-key cryptography allow us to control exactly who can access

our information. Given the breadth of applications, it may seem like public-key

cryptography allows us to control our data in any way we want. However, it has

the disadvantage that it is all-or-nothing; given an encrypted message, one either can

decrypt it and access the plaintext, or learn nothing about it. This does not allow a

recipient to only learn specific features of the data. We can think of these features as

a function applied to the data.

One example use case is secure email. Suppose Alice is emailing Bob, who is

using a commercial email service that offers spam filtering. Now, suppose Bob wants

to only receive encrypted email, so that only he can read it. Using only public-key

encryption, if he wanted his email service to continue to provide spam filtering, he

would have to allow the email provider to decrypt the messages, so it can check if

they are spam. Ideally, Bob would not have to give his email provider access to all of

17



his email.

Another such use case is for researchers accessing sensitive data, as discussed by

Naveed et al. [54]. Researchers may be interested in doing research on genomic

and other personal data. However, many people may be uncomfortable revealing

this information unless they know that their data is only used for research purposes.

Allowing only certain analyses about each person’s data ensures that personal infor-

mation is not exposed, and instead only the relevant information for the research is

extracted from the encrypted data.

The general idea behind all of these examples is controlled access. We want to

be able to have messages encrypted, in a way that still allows us to share a specific,

limited amount of information about the message with a third party. Of course, we

can do that currently by just revealing the entire message, but ideally we would like

to control what information is revealed, and not reveal the entirety of the message.

Functional encryption is a cryptographic primitive which allows us to do this [13].

Using functional encryption, Bob can create a key for a function, such that if he gives

Alice the key and encrypted data, she can use both of them to get the value of the

function applied to the data. For our first example above, this would allow Bob to

encrypt his email, and, using functional encryption, allow the email service provider

to only learn whether each email was spam or not, but nothing else about the contents

of his email.

In some ways this is similar to the idea of Fully Homomorphic Encryption (FHE).

FHE allows computing any function on encrypted data to get the encrypted result.

However, functional encryption differs from FHE in that when someone computes

a function of some encrypted data, in a functional encryption scheme they get the

plain text result, and not the encryption of the result an FHE scheme would give.

Indeed, we can use fully homomorphic encryption to achieve a functionality similar to

functional encryption. Using the parties from the previous example, Bob can encrypt

his message under a fully homomorphic encryption scheme, and send it to Alice. She

can then use the fully homomorphic scheme to compute the encrypted value of a

function of Bob’s message. She can then give this to Bob, and ask him to decrypt it
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and send it back to her. This variant differs from functional encryption by adding an

extra round of interaction between the two parties any time Alice wants to evaluate

a function.

Consider the following example, which illustrates why a scheme where additional

interaction is not necessary may be desirable. Suppose that Alice is storing her data

in a commercial data store, in an encrypted format. The data storage company may

require, for copyright (or other legal) reasons, the ability to determine if a user’s

data violates copyright (or the law). Alice may not feel inclined to cooperate with

the company for this, especially if she was unlawfully storing some data. However,

if Alice had initially granted them a key to check compliance, this would allow the

company to examine the data for copyright (or legal) violations without getting other

information.

As opposed to the above construction involving fully homomorphic encryption,

there are schemes for functional encryption which do not require the extra interaction

between Alice and Bob to get the answer at the end. We discuss these schemes, and

their theoretical trade-offs more in Section 3.3. However, while there have been many

such schemes created, few implementations exist to evaluate their real-world efficiency.

One of the main reasons that public-key encryption and digital signatures are

used on the internet is the existence of efficient protocols and practical implemen-

tations. For functional encryption, on the other hand, while there are polynomial

time schemes, they may not be as efficient as desired in practice. Moreover, there

are few prototype implementations of the known schemes, so it is even less clear how

practical or impractical current schemes really are, or how their performance depends

on various parameters of the protocol.

In this thesis, we start to address this deficiency. We create a framework in which

to experiment with different implementations, and assess their efficiency. In addition,

we implement several functional encryption schemes, and do a detailed study of their

performance.
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1.1 Our Results

We built the Framework for Investigating Functional Investigation (FIFE). FIFE

is a library which allows for evaluations of the performance of functional encryp-

tion schemes, and comparisons between them. It also allows for measuring the time

and space usage impacts of using different building blocks for functional encryption

schemes. FIFE also allows investigations of what use cases are practical for a given

scheme.

Beyond creating this framework, we, for the first time, implemented and tested

a few different bounded-collusion functional encryption schemes, schemes which are

secure against an a priori bounded number of key queries. First, we looked at the

Sahai-Seyalioglu scheme, which is secure for only one key query [61]. This is both

an interesting scheme on it own, and also a useful building block for other schemes.

We also looked at the Gorbunov-Vaikuntanathan-Wee (GVW) scheme for bounded-

collusion functional encryption [32]. We also compared the GVW scheme to a stateful

scheme, where the party issuing keys for functions is allowed to keep track of the keys

issued.

For each of these schemes, we investigated their running times, and also the key

and ciphertext sizes, in a variety of contexts. We looked into each scheme to find its

performance bottlenecks.

For all of the bounded-collusion functional encryption schemes we investigated,

encryption plays a starring role. Given this, we evaluated the effect of different

public-key and secret-key encryption schemes on the performance of the functional

encryption schemes. We evaluated RSA [59], one of the most well known public-key

encryption schemes, and AES [1], one of the most common secret-key encryption

schemes.

The performance of each scheme also depends on the class of functions it supports.

While the schemes studied support all functions, we chose to start our investigations

with smaller and simpler classes of functions. We looked at parity functions, which

compute the parity of a subset of the input, inner product modulo a prime 𝑝, and
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Hamming distance. These functions are interesting, while still relatively simple, and

serve as a good initial study into the performance characteristics of functional en-

cryption schemes.

We found that for the functional encryption schemes we investigated, running

times were generally not much of an issue. However, we found that ciphertext sizes

grew very quickly with the complexity of the functions we wanted to calculate, and

that for the Gorbunov-Vaikuntanathan-Wee scheme in particular, ciphertext sizes

quickly became impractical. For applications where there is one party issuing all the

keys, the stateful scheme offers a more practical solution. While functional encryption

is very exciting, more work is needed to make it feasible for use.

21



22



Chapter 2

Related Work

In this thesis, we aim to understand the efficiency of functional encryption in practice.

A lot of work has already gone into defining, designing, and understanding the limits

of functional encryption and constructions of it. We review some of that prior work

below.

2.1 Functional Encryption and Related Primitives

Functional Encryption was first defined by Boneh, Sahai and Waters in 2011 [13],

and by O’Neill in 2010 [55]. However, the idea of only revealing partial information

about a ciphertext did not start there. Functional encryption instead was a powerful

generalization of many different ideas.

The first of these was identity-based encryption (IBE), first defined by Shamir in

1984 [66]. An IBE scheme is similar to a public-key encryption scheme, but replaces a

person’s public key with their identity (their identity can be their name, email address,

or any other form of identifier). Boneh and Franklin in 2001 defined chosen-ciphertext

security for IBE and created an IBE scheme which had chosen-ciphertext security in

the random oracle model [12]. Cocks in 2001 created a concrete scheme for this based

on the quadratic reciprocity problem, and showed that the communication required

was not too large [17]. Boyen and Waters in 2006 created an anonymous hierarchical

IBE scheme, in which the random oracle model was not required for security [14].
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Attribute-based encryption (ABE) was another special case of functional encryp-

tion. First proposed by Sahai and Waters in 2005, ABE allows a user to decrypt

data based on attributes that they (or the encrypted data) have [62]. Goyal, Pandey,

Sahai, and Waters in 2006 created key-policy ABE, where a ciphertext has a set of

attributes, and a key has an access policy which is a monotonic boolean formula (a

boolean formula consisting only of AND and OR gates), and the key only decrypts

the ciphertext if the attributes of the ciphertext agree with the access policy of the

key [35]. In 2010 Lewko, Okamoto, Sahai, Takashima, and Waters created an ABE

scheme for monotone boolean formulas which was fully secure, as compared to pre-

vious works’ weaker proofs of security [50]. In 2013, Gorbunov, Vaikuntanathan,

and Wee constructed an ABE scheme for arbitrary polynomial-size circuits, using the

learning with errors assumption [33].

Katz, Sahai, and Waters generalized IBE and ABE to predicate encryption, where

keys are associated with functions, and a key can decrypt a ciphertext only if its

function evaluates to 1 over the attributes of the ciphertext, and created a scheme for

inner product predicates [43]. Lewko et al., in the same paper where they created a

fully secure ABE scheme, also created a fully secure predicate encryption scheme for

inner products [50]. Gorbunov, Vaikuntanathan, and Wee in 2015 created a predicate

encryption scheme for arbitrary circuits [34].

Functional encryption is similar to predicate encryption in that we have secret

keys associated with functions. However, it differs in that functional encryption

can reveal results of these functions, and not just the ciphertext. Boneh et al. in

2011, in addition to defining functional encryption, also defined a simulation based

definition of security (defined in more detail in Section 3.2.5), and showed it was

impossible to satisfy for a functional encryption scheme for an unbounded number

of functions. Agrawal, Gorbunov, Vaikuntanathan, and Wee in 2013 additionally

showed that there was a family of circuits for which the even weakest simulation

based definition of security didn’t hold when an unbounded number of keys are issued

[2]. De Caro, Iovino, Jain, O’Neill, Paneth, and Persiano in 2013 continued to study

the relationship between various security definitions for functional encryption, and

24



created a compiler for transforming a functional encryption scheme secure under an

indistinguishability based definition (also defined in Section 3.2.5) into one under a

form of a simulation based definition [20].

2.1.1 Bounded-Collusion Functional Encryption

When restricted to only issuing a bounded number of keys, the picture is much rosier.

Sahai and Seyalioglu in 2010 showed how to use randomized encodings, including gar-

bled circuits, to make a functional encryption scheme secure for issuing one key [61].

Notably, their scheme only needs to assume the existence of public-key encryption,

and not anything stronger.

In 2013, Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich showed how to

make another functional encryption scheme secure for one key [30]. Their scheme used

fully homomorphic encryption, first defined by Rivest, Adleman, and Dertouzos in

1979 [58], and first realized by Gentry in 2009 using methods from lattice cryptography

[27]. This scheme had the advantage that the ciphertext sizes did not grow with the

size of functions to be computed on them, unlike the previous scheme.

Gorbunov et al. in 2012 also extended any one key scheme to support a bounded

number of keys [32]. They also defined bounded-collusion functional encryption,

which is secure as long as a party never has keys for more than a bounded num-

ber of functions (see Section 3.2.5 for more details). They also showed that their

scheme achieved adaptive simulation security, using techniques from non-committing

encryption [16], first given by Canetti, Feige, Goldreich, and Naor in 1996. Also,

like the Sahai-Seyalioglu scheme, the scheme by Gorbunov et al., using the Sahai-

Seyalioglu scheme as a base, only relies on the existence of public-key encryption and

pseudorandom generators, and not any stronger assumptions.

In 2016, Agrawal and Rosen made a bounded-collusion functional encryption

scheme that was more efficient [3]. This scheme also moved much of the encryption

computation offline, so that the encryption algorithm was more efficient. This scheme

uses the ring learning with errors problem, and similarities between a cryptosystem

based on it [29, 57] and a fully homomorphic cryptosystem [15].
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There have also been constructions for functional encryption based on stronger

assumptions such as indistinguishability obfuscation or multilinear maps. In 2015,

Waters made a functional encryption scheme for an unbounded number of queries

using indistinguishability obfuscation that was secure for an indistinguishability-based

security definition [72]. Additionally, Garg, Gentry, Halevi, and Zhandry in 2016

showed how to make a functional encryption scheme based on certain assumptions

about multilinear maps [26].

2.2 Functional Encryption Implementations

Our work seeks to compare different implementations of functional encryption. While

there are not existing implementations of functional encryption, there are closely

related implementations. These either use extra interactions, support only a subset

of functional encryption, or are limited to only supporting one key.

2.2.1 Ciphertext-Policy Attribute-Based Encryption

In 2007, Bethencourt, Sahai, and Waters implemented and evaluated a ciphertext-

policy attribute-based encryption scheme, where a user could only decrypt a cipher-

text if their credentials allowed it [10]. As we discussed earlier, this can be thought of

as a specific type of functional encryption scheme. However, since their goal was not

full functional encryption, they are not limited in the number of users or ciphertexts

they can support.

2.2.2 Controlled Functional Encryption

Naveed, Agrawal, Prabhakaran, Wang, Ayday, Hubaux, and Gunter presented Con-

trolled Functional Encryption in 2014 [54]. They defined a new idea of controlled

functional encryption, which allows for computations that look similar to functional

encryption. Here, there are the same three parties as in functional encryption, a

data-owner, an evaluator, and a key authority. However, when an evaluator wants to
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evaluate a function, they must ask the key authority for a key for each ciphertext.

In comparison, in functional encryption, a key for a function allows you to evaluate

that function for every ciphertext, without the additional interaction for each pair of

ciphertext and function. Naveed et al. also implemented their proposal, the first for

a scheme related to functional encryption.

2.2.3 Function-Hiding Inner Product Functional Encryption

Function-hiding functional encryption means that a key for a function does not reveal

the function for which it is a key, and was first proposed by Shen, Shi, and Waters

in 2008 [67]. In 2016, Kim, Lewi, Mandal, Montgomery, Roy, and Wu implemented

function-hiding functional encryption for inner products [44]. They implemented and

optimized constructions by Bishop, Jain, and Kowalczyk [11], and Datta, Dutta, and

Mukhopadhyay [19]. Using this, they made a general one-key functional encryption

scheme for two inputs, where functions are evaluated over two inputs, as long as the

messages encrypted are small. They also implemented their scheme, and evaluated it

for vectors of different sizes.

2.3 Secure Computation

Many of the functional encryption schemes we looked at build upon existing tools

from secure computation. We discuss existing work and implementations of them

for the two ideas that are used in schemes we implement: garbled circuits and the

Ben-Or-Goldwasser-Wigderson (BGW) scheme for multiparty computation.

2.3.1 Garbled Circuits

The Sahai-Seyalioglu scheme for functional encryption requires the use of randomized

encodings for a circuit [61]. Garbled Circuits are such a randomized encoding, and

were discovered by Yao in 1986 [73]. Since then, there have been a number of im-

provements to the efficiency of garbled circuits, that reduce their computation time
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and space usage. Naor, Pinkas, and Sumner in 1999 invented Garbled Row Reduc-

tion, which showed how to reduce the space needed per gate by a quarter [53]. In

2008, Kolesnikov and Schneider showed that XOR gates can be computed without

any cryptographic operations, called free-XOR, reducing the space and time usages

[48]. Pinkas, Schneider, Smart, and Williams in 2009 showed that the Garbled Row

Reduction and free-XOR techniques were compatible, and additionally found a tech-

nique to reduce the space used by each gate in half, but which was not compatible

with free-XOR [56]. In 2015, Zahur, Rosulek, and Evans showed how to combine

the two, using half-gates, where each gate is encrypted and decrypted in two steps,

to allow both XOR gates that require no cryptographic operations and only half the

storage for the rest of the gates [74].

Implementations One of the first implementations of garbled circuits was Fairplay,

in 2004 [51]. Pinkas, Schneider, Smart, and Williams in 2009 also made implemen-

tations that took advantage of the techniques they found, and compared them [56].

In 2010, TASTY included another garbled circuit which moved some of the setup of-

fline, and analyzed the effects of components on the garbled circuit construction [38].

Huang, Evans, Katz, and Malka in 2011 implemented garbled circuits that could be

computed in a streaming manner, removing limits based on what could be stored in

memory [39]. Bellare, Hoang, Keelveedhi, and Rogaway in 2013 created JustGarble,

further improving the efficiency of evaluating garbled circuits [7]. This was further

improved to create libgarble, which incorporated the half-gates technique [36].

2.3.2 The BGW Secure Multiparty Computation Scheme

In 1988, Ben-Or, Goldwasser, and Wigderson created a scheme for secure multiparty

computation [9]. This allows many parties to each hold a secret, and collectively

compute a function of their secrets, without their secrets being revealed. To do this,

they use Shamir’s secret sharing scheme [65] to compute an arithmetic circuit over the

inputs. Shamir’s scheme represents a secret with a polynomial, and uses polynomial

interpolation among points of that polynomial to recover the secret. This scheme

28



allows adding secrets for free, but increases the degree of the polynomial when mul-

tiplying. The BGW scheme improves upon this by using additional communication

to reduce the degree of the polynomial.

2.4 Necessary Circuit Classes and Universal Circuits

Most functional encryption schemes treat functions as circuits over their inputs. For

some of the schemes, we need to evaluate arithmetic operations. These schemes also

use universal circuits, which take in a circuit and the input, and evaluate the circuit

on the input. In our implementations of functional encryption schemes, we find that

reducing the size of these circuits is useful to increase efficiency. We present some of

the existing work that finds smaller circuits for these purposes.

2.4.1 Boolean Circuits for Arithmetic Operations

There are many ways to construct boolean circuits for arithmetic operations. In

2009, Kolesnikov, Sadeghi, and Schneider showed how to make such circuits smaller,

in a manner well suited to garbled circuits [47]. There are also more asymptoti-

cally efficient algorithms for multiplication. Karatsuba’s algorithm does so by re-

cursively reducing multiplications to smaller multiplications and additions [41]. The

Schönhage-Strassen algorithm is even more efficient, but only practical for larger

numbers [63].

2.4.2 Universal Circuits

In 1976, Valiant showed how to make a universal circuit that supports all circuits,

with asymptotically optimal size [71]. Kolesnikov and Schneider in 2008 provided

an implementation that had smaller constant factors, but was less asymptotically

efficient [49]. Kiss and Schneider in 2016 made a universal circuit implementation

that achieves Valiant’s asymptotic growth, and improved on the constant factors to

make it more practical [45].
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Chapter 3

Background

In this chapter, we state the notation (in Section 3.1), and define and discuss the

building blocks (in Section 3.2), used throughout this thesis. We then move on to

discussing different schemes for functional encryption in Section 3.3.

3.1 Notation

We will use negl(𝜅) to indicate some function 𝑓 that is negligible in 𝜅, such that for

any polynomial 𝑝, there is some 𝑐 such that for 𝜅 > 𝑐, 1
𝑝(𝜅)

> 𝑓(𝜅).

We will use 𝑥
$←− 𝑆 to mean that 𝑥 is selected uniformly at random from a set 𝑆.

We will use 𝑥← 𝐴 to mean that 𝑥 is the output of algorithm 𝐴.

We will use [𝑛] = {0, 1, . . . , 𝑛− 1}.

Let 𝒳𝑛 ⊆ {0, 1}𝑛, and 𝒴𝑚 ⊆ {0, 1}𝑚. Then, we call 𝒞 ⊆ {𝐶 : 𝒳𝑛 → 𝒴𝑛} a class of

circuits, where for each 𝐶 ∈ 𝐶, given 𝑥 ∈ 𝒳 , it outputs 𝐶(𝑥) ∈ 𝒴 . If, for all 𝐶 ∈ 𝒞,

we can describe 𝐶 using 𝜆 bits, we say |𝐶| = 𝜆, and denote 𝒞 = 𝒞𝜆.

3.2 Building Blocks

We define and discuss the theoretical building blocks used in constructions of func-

tional encryption.
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3.2.1 Shamir Secret Sharing

Definition 1. An 𝑁-party secret sharing scheme consists of two algorithms: Share

and Reconstruct.

∙ Share(𝑥): Given an input 𝑥, output shares of 𝑥, {𝑠𝑖}𝑖∈[𝑁 ].

∙ Reconstruct(𝑆): Given a set 𝑆 of shares, output 𝑦.

Correctness An 𝑁 -party secret sharing scheme is called 𝑡-reconstructable if, for

any 𝑆 ⊂ Share(𝑥), with |𝑆| ≥ 𝑡, 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑆) = 𝑥.

Security An 𝑁 -party secret sharing scheme is 𝑡-secure if, for any algorithm 𝐴,

𝑃𝑟𝑥∈𝑋,𝑆⊂Share(𝑥),|𝑆|≤𝑡[𝐴(𝑆) = 𝑥] =
1

|𝑋|
.

In 1979, Shamir created the following 𝑁 -party, (𝑡 + 1)-reconstructable, 𝑡-secure

secret sharing scheme based on polynomial interpolation [65].

∙ Share(𝑥): Given an input 𝑥 in a finite field F, with |F| > 𝑁 , pick a random

degree-𝑡 polynomial 𝑝 over F such that 𝑝(0) = 𝑥. Now, the shares of 𝑥 are 𝑗, 𝑝(𝑗)

for 𝑗 ∈ 𝐽 , where 𝐽 ⊂ F ∖ {0}, and |𝐽 | = 𝑁 . We denote 𝑗, 𝑝(𝑗) as 𝑠𝑗(𝑥).

∙ Reconstruct(𝑆): If 𝑆 = {(𝑖, 𝑝(𝑖))}, and |𝑆| ≥ 𝑡 + 1, we can do polynomial

interpolation to recover 𝑝. Then, 𝑝(0) = 𝑥.

Secret sharing is closely related to the idea of secure multiparty computation,

where multiple parties each have private inputs, and want to collectively compute a

function of their inputs without revealing the inputs. The correctness and security

definitions are analogous, just replacing the recovered 𝑥 with a computed result, 𝑓(𝑥).

The Ben-Or-Goldwasser-Wigderson (BGW) scheme [9] uses Shamir secret sharing to

create a (𝑡+1)-reconstructable, 𝑡-secure multiparty computation scheme. It does this

by noticing the following: in the Shamir secret sharing scheme, if 𝑠𝑖(𝑥) and 𝑠𝑖(𝑦) are
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shares of 𝑥 and 𝑦, let,

𝑠𝑖(𝑥 + 𝑦) = 𝑠𝑖(𝑥) + 𝑠𝑖(𝑦) = 𝑝𝑥(𝑖) + 𝑝𝑦(𝑖) = (𝑝𝑥 + 𝑝𝑦)(𝑖).

Now, if 𝑝𝑥+𝑦 = 𝑝𝑥 + 𝑝𝑦, we see that 𝑠𝑖(𝑥 + 𝑦) are shares of 𝑝𝑥+𝑦, and we can use

the reconstruct algorithm to get 𝑥+𝑦, with 𝑡 shares. For multiplication, we note that

𝑠𝑖(𝑥)𝑠𝑖(𝑦) = (𝑝𝑥𝑝𝑦)(𝑖), and this can be reconstructed with 2𝑡 + 1 shares.

The BGW scheme starts with the parties all secret sharing their private inputs

with everyone else, using Shamir secret sharing. Then, they each use the above ob-

servations to compute a function 𝑓 of their data. The BGW scheme also adds rounds

of interaction after multiplications to reduce the degrees of the polynomials, making

it 𝑡-reconstructable. Without these extra interactions, for a degree 𝐷 polynomial, the

BGW scheme gives an 𝑁 -party, (𝑡𝐷+1)-reconstructable, 𝑡-secure multiparty scheme.

We will only use this form of the BGW scheme in this thesis. For further details on

the interactive component, and detailed proofs of security, see the original paper [9]

and a careful treatment by Asharov and Lindell [6].

3.2.2 Traditional Encryption Schemes

We will use Traditional Encryption Scheme to mean either a public-key encryption

scheme, or a secret-key encryption scheme [59].

Definition 2. A traditional encryption scheme consists of three algorithms.

∙ Setup(1𝜅): Given the security parameter 𝜅, generate and output a public key,

𝑃𝐾, and a secret key 𝑆𝐾.

∙ Encrypt(𝑃𝐾, 𝑚𝑠𝑔): Given a message 𝑚𝑠𝑔, and the public key, generate a

ciphertext 𝐶𝑇 for 𝑚𝑠𝑔.

∙ Decrypt(𝑆𝐾, 𝐶𝑇 ): Given a ciphertext 𝐶𝑇 for 𝑚𝑠𝑔, and the secret key 𝑆𝐾,

output 𝑚𝑠𝑔.

We abuse the above notation for secret-key encryption by setting 𝑃𝐾 = 𝑆𝐾.
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Correctness For any (𝑆𝐾,𝑃𝐾) ← 𝑆𝑒𝑡𝑢𝑝(1𝜅), we call a traditional encryption

scheme correct if,

Decrypt(𝑆𝐾,𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾,𝑚𝑠𝑔)) = 𝑚𝑠𝑔

always.

Informally, we call a traditional encryption scheme secure if an adversary gains

only negligible advantage over randomly guessing in recovering the value of a cipher-

text (where for a public-key scheme, the adversary also has access to the public key).

There are many variants of security for traditional encryption schemes, and as these

details are not important for our work, we leave the details to the presentation by

Goldwasser and Micali [31]. The book by Katz and Lindell is another useful reference

[42].

3.2.3 Garbled Circuits

Yao originally defined garbled circuits in 1986 as a method of two party secure compu-

tation [73]. A garbling scheme is a way to turn a circuit into a method of computing

over encrypted data: given a set of inputs, which are only partially known (and par-

tially correspond to another party’s secret), it allows you to only learn the known

inputs and the output. It does this by encoding, for each input bit, a separate label

for 0 or 1.

Definition 3. A garbling scheme 𝐺𝑆 consists of two methods.

∙ Garble(𝐶): Given a circuit 𝐶 : {0, 1}𝑎 → {0, 1}𝑐, output a garbled circuit 𝐺,

and labels 𝑙𝑖,𝑏 for 𝑖 ∈ [𝑎], 𝑏 ∈ {0, 1}.

∙ Evaluate(𝐺, {𝑙𝑖,𝑥𝑖
}𝑖∈[𝑎]): Given a garbled circuit 𝐺 for 𝐶, and 𝑎 labels for

𝑥 = (𝑥𝑖)𝑖∈[𝑎], output 𝐶(𝑥).

We call a garbling scheme correct if, when (𝐺, {𝑙𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1})← 𝐺𝑎𝑟𝑏𝑙𝑒(𝐶),

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐺, {𝑙𝑖,𝑥𝑖
}𝑖∈[𝜆]) = 𝐶(𝑥).
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As the security definition will not be directly used in this thesis, we leave the details

to Yao’s presentation [73]. Gorbunov et al. have a good definition for decomposable

randomized encodings, defined by Ishai and Kushilevitz in 2000 [40] and Applebaum,

Ishai, and Kushilevitz in 2006 [4], which is a generalization of a garbling scheme [32].

3.2.4 Universal Circuits

Definition 4. Let 𝒞𝜆 : 𝒳𝑎 → 𝒴𝑐 be a class of circuits as defined above, where each

circuit is described by 𝜆 bits. Then, a universal circuit 𝑈𝜆 for 𝒞𝜆 is a circuit 𝑈𝜆 such

that, on input 𝑥 ∈ 𝒳𝑎 and 𝐶 ∈ 𝒞𝜆, 𝑈𝜆(𝑥,𝐶) = 𝐶(𝑥) ∈ 𝒴𝑐.

If 𝒞𝜆 is the set of all possible circuits from 𝒳𝑎 to 𝒴𝑐, we call 𝑈𝜆 a general universal

circuit.

In 1976, Valiant showed how to make a general universal circuit, in a way that

was asymptotically optimal: that grows with 𝑘 log 𝑘, where 𝑘 is the size of the input

circuit [71]. However, for over 20 years there was not an implementation of gen-

eral universal circuits, due to concerns about their efficiency in practice. In 2008,

Kolesnikov and Schneider made the first implementation, with size about 1.5𝑘 log2 𝑘,

which is asymptotically slower than Valiant’s construction [49]. In 2016, Kiss and

Schneider constructed a scheme with the optimal asymptotic efficiency, and showed

the performance of their implementation of it on interesting circuits [45].

3.2.5 Functional Encryption

Functional Encryption (FE) was first formally defined by Boneh, Sahai and Waters

[13] and O’Neill [55]. The following definition closely resembles that of Gorbunov,

Vaikuntanathan, and Wee [32], which in turn is based on that of Boneh et al.

Definition 5. Let 𝒞 = {𝐶𝜅}𝜅∈N be a collection of families of circuits. Then, a func-

tional encryption scheme for 𝒞 consists of four algorithms, Setup, KeyGen, Encrypt,

and Decrypt.

∙ Setup(1𝜅): Given the security parameter 𝜅, generate and output a master

public key, 𝑀𝑃𝐾, and a master secret key 𝑀𝑆𝐾.
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∙ KeyGen(𝑀𝑆𝐾, 𝐶): Given a circuit 𝐶, and the master secret key, generate a

functional key 𝑘𝐶 for the function computed by 𝐶.

∙ Encrypt(𝑀𝑃𝐾, 𝑥): Given a value 𝑥, and the master public key, generate a

ciphertext 𝐶𝑇 for 𝑥.

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): Given a ciphertext 𝐶𝑇 for 𝑥, and the functional key

𝐹𝐾 = 𝑘𝐶 for 𝐶, output 𝐶(𝑥).

As before, when 𝑀𝑃𝐾 = 𝑀𝑆𝐾, we abuse notation to call it a Secret-key Func-

tional Encryption Scheme (sk-FE).

We call the functional encryption scheme correct if for all circuits 𝐶 ∈ 𝒞𝜅, and all

𝑥, if (𝑀𝑃𝐾,𝑀𝑆𝐾)← 𝑆𝑒𝑡𝑢𝑝(1𝜅),

𝑃𝑟 [𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾,𝐶), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝑃𝐾, 𝑥)) ̸= 𝐶(𝑥)] = negl(𝜅)

where the probability is over the randomness of the Encrypt algorithm.

We will discuss security of Functional Encryption in Section 3.2.5.

Functional encryption, as described above, has three parties, the key authority, the

encryptor, and the evaluator, that interact in the following way. The key authority

runs the Setup algorithm, and generates the master secret key and master public

key. They then announce the master public key to the world. The encryptor uses

the master public key to encrypt their message 𝑥 (or messages) with the Encrypt

algorithm and sends the ciphertext(s) 𝐶𝑇𝑥 to the evaluator. The evaluator asks

the key authority for permission to evaluate a function 𝑓 (or functions), and the

key authority grants permission by running the KeyGen algorithm and issuing the

functional key(s) 𝑘𝑓 for the function(s). The encryptor and evaluator steps can happen

in any order. Then, the evaluator uses the functional key 𝑘𝑓 and an encrypted message

𝐶𝑇𝑥 to recover the function applied to the message, 𝑓(𝑥). Note that here multiple

ciphertexts and functional keys can be issued, and cannot depend on one another.

This set of interactions can also happen where the encryptor and key authority

are the same party, the setting of sk-FE. Suppose Alice has some data, and she wants
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Bob to be able to compute some functions of the data. Then, she can play the

roles of the key authority and encryptor, running the Setup, Encrypt, and KeyGen

algorithms. This allows her to give Bob ciphertexts for messages, and functional keys

for functions. Then, Bob can use these to to evaluate the functions he desires on the

ciphertexts he has.

Now, she can encrypt 𝑥 using Encrypt, and give Bob the resulting ciphertext 𝐶𝑇 .

She can then do this for other values, and also give him other ciphertexts 𝐶𝑇 ′. If

Alice publishes the master public key, then anyone else who has it can also generate

encrypted inputs. Again, similar to above, note that the ciphertexts must work for

all functions, and cannot depend on them.

Just as in traditional encryption schemes, where secret-key encryption can be

thought of as a special case of public-key encryption, we can say the same about

sk-FE. Now, the only reason secret-key encryption or sk-FE is worth discussing is if

it offers some advantages. The first advantage is speed; as we will discuss specifically

for RSA and AES in Section 5.1.1, secret-key encryption schemes are much faster in

practice. In addition, secret-key encryption primitives are much simpler than public-

key ones. sk-FE is interesting for the same reason: it turns out to be faster in practice.

In addition to the presented example, there are many cases where sk-FE is exactly

the use case we are looking for, and so it is not less usable than functional encryption.

In a functional encryption scheme, the encryptor has to trust the key authority to

only give functional keys to functions that reveal limited information, and not the

identity function. In sk-FE, they can control this by deciding which functions to issue

keys for.

However, there are still situations in which functional encryption is more desirable

that sk-FE. Having multiple parties encrypt messages under a single master public

key, such that a single functional key allows an evaluator to evaluate a function on

all the inputs, can be seen as a good thing. It allows the evaluator to target certain

messages while preserving the privacy of the remaining encryptors. More concretely,

let the evaluator be an investigative agency, such as the FBI, and the key authority

be a cloud storage operator. Now, users can store their data encrypted in the cloud,
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but the FBI can still request keys to perform a search on the encrypted data, with

a warrant detailing the function required before the cloud storage provider issues the

functional key.

Keeping State

In the stateful scheme discussed in Section 3.3.2, we defined a bounded-collusion func-

tional encryption scheme where the key authority must keep state. This relaxation is

useful because it allows us to create much more efficient schemes for bounded-collusion

functional encryption, as we will discuss in Section 5.3.1. There are many practical

applications for which this is a reasonable restriction to place. If there is a central

authority issuing all keys, they can keep track of how many functional keys have been

issued for a given functional encryption scheme. Also, since they are already storing

the master secret key for that scheme, it is not unreasonable for them to also maintain

a count of the number of keys issued using that key.

Security of Functional Encryption

Security for functional encryption is not easy to define. There are two main types of

security defined: those based on indistinguishability and those based on simulation.

Brent, Sahai, and Waters showed that an indistinguishability-based definition of secu-

rity for functional encryption has some weaknesses, but simulation-based definitions

were impossible to achieve with an unbounded number of keys for functions [13].

Indistinguishability-Based Security Defined by O’Neill [55] and Boneh et al.

[13], indistinguishability-based security asks an adversary to distinguish between two

messages given the ability to ask for secret keys.

Definition 6. We say a functional encryption scheme 𝐹𝐸 is has (NA, AD)-IND-

security if for any probabalistic polynomial time (non-adaptive, adaptive) algorithm

𝐴, 𝑃𝑟[𝑏 = 𝑏′] = 1
2

+ negl(𝜅) for the following experiment.

1. 𝑀𝑃𝐾,𝑀𝑆𝐾 ← 𝐹𝐸.𝑆𝑒𝑡𝑢𝑝(1𝜅)
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2. 𝑚0,𝑚1 ← 𝐴𝐹𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾,·)(𝑀𝑃𝐾)

3. 𝑐
$←− 𝐹𝐸.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝑆𝐾,𝑚𝑏)

4. 𝑏′ ← 𝐴𝒪(𝑀𝑆𝐾,·)(𝑀𝑃𝐾, 𝑐)

Here, we must have that for each 𝑘𝐶𝑖
requested by 𝐴, in steps 2 or 4, 𝐶𝑖(𝑚0) =

𝐶𝑖(𝑚1).

If the adversary is non-adaptive, the oracle 𝒪 is the empty oracle, which returns

nothing. If the adversary is adaptive, the oracle 𝒪 is instead 𝐹𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾, ·).

The condition on the functional keys the adversary is allowed to request is neces-

sary for a meaningful security definition, as a function which differs on the messages

will always allow the adversary to identify the challenge ciphertext 𝑐.

Boneh et al. showed that this definition is still unsatisfying [13]. They showed

that with a circuit family where there are not any circuits 𝐶 such that 𝐶(𝑥) = 𝐶(𝑦),

having 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝑃𝐾, 𝑥) = 𝑥 can satisfy this definition, even though it leaks more

information than is desired.

Simulation Security Boneh et al. instead made a security definition based on sim-

ulating functional encryption [13]. Gorbunov et al. slightly broadened their definition

to support multiple ciphertexts [32].

Definition 7. A functional encryption scheme FE is adaptively simulation (AD-SIM)

secure if, for every probabalistic polynomial time adversary 𝐴 and simulator 𝑆, the

outputs of experiment 1,

1. (𝑀𝑃𝐾,𝑀𝑆𝐾)← 𝐹𝐸.𝑆𝑒𝑡𝑢𝑝(1𝜅)

2. 𝑥1, . . . , 𝑥𝑙 ← 𝐴𝐹𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾,·)(𝑀𝑃𝐾)

3. 𝐶𝑇𝑖 ← 𝐹𝐸.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝑃𝐾, 𝑥𝑖) for 1 ≤ 𝑖 ≤ 𝑙

4. 𝛼← 𝐴𝐹𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾,·)(𝑀𝑃𝐾,𝐶1, . . . , 𝑐𝑙)

5. Output (𝛼, 𝑥1, . . . , 𝑥𝑙),
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and experiment 2,

1. (𝑀𝑃𝐾,𝑀𝑆𝐾)← 𝐹𝐸.𝑆𝑒𝑡𝑢𝑝(1𝜅)

2. 𝑥1, . . . , 𝑥𝑙 ← 𝐴𝐹𝐸.𝐾𝑒𝑦𝑔𝑒𝑛(𝑀𝑆𝐾,·)(𝑀𝑃𝐾)

∙ Let (𝐶1, . . . , 𝐶𝑞) be A’s oracle queries.

∙ Let 𝑆𝐾𝑖 be the oracle’s reply to 𝐶𝑖.

∙ Let 𝒱 = {𝐶𝑖(𝑥𝑗)|1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤ 𝑙}

3. 𝐶𝑇1, . . . , 𝐶𝑇𝑙 ← 𝑆(𝑀𝑃𝐾,𝒱 , 1|𝑥𝑖|)

4. 𝛼← 𝐴𝑆𝑈𝑥(·)(𝑀𝑆𝐾,·)(𝑀𝑃𝐾,𝐶1, . . . , 𝑐𝑙)

5. Output (𝛼, 𝑥1, . . . , 𝑥𝑙),

are computationally indistinguishable. Here, 𝑈𝑥(·) is the universal circuit which

on input 𝐶 outputs 𝐶(𝑥). Also, 𝑆 is only allowed to query 𝑈𝑥(·) on its input, 𝐶.

If we replace the oracle access in step 4 of each experiment with a null oracle, this

is then a non-adaptive functional encryption scheme.

This definition captures the idea that ciphertexts can be simulated only knowing

the length of the message. The simulator also has access to the evaluation of the

adversary’s queries to the oracle on the test inputs. This is necessary, as if the

ciphertexts do not agree on the inputs, it is easy for the adversary to distinguish the

two experiments. Also, the second stage of the simulator has a universal circuit on

the input circuits to again allow the simulator to know what it is trying to simulate.

Unfortunately, while this is clearly a stronger security definition, Boneh. et al.

showed that this definition is impossible to satisfy for a functional encryption scheme

[13].

Bounded-Collusion Functional Encryption

The result of Boneh et al. [13] rules out the possibility of adaptive simulation security

for full functional encryption. However, it does not say anything about the case
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where an adversary can only have a limited number of functional keys. This setting

is what Gorbunov et al. called bounded-collusion functional encryption [32]. For

bounded-collusion functional encryption, the picture is much rosier. They created a

bounded-collusion functional encryption scheme (the GVW scheme which we will see

below) that had adaptive simulation security.

3.3 Constructions of Functional Encryption

As we discussed in Section 3.2.5, it is impossible to have a functional encryption

scheme that has adaptive simulation secure for an unbounded number of function

keys. However, it is possible to make schemes that are secure for a bounded number

of function keys.

3.3.1 One-key Functional Encryption

The most basic bounded-collusion FE scheme is one which is secure for up to one

functional key, or a one-key FE scheme. Such a scheme can issue many functional

keys, but is not secure when a person has access to multiple functional keys. In

addition, these can serve as a building block for many bounded-collusion schemes.

There are multiple existing one-key schemes, each with their own trade-offs. We

present some of them here, and discuss their advantages and disadvantages.

Singleton FE

Singleton Functional Encryption, as defined by Gorbunov et al. [32], gives us a

functional encryption scheme for the circuit family 𝒞 = {𝐶}, where 𝐶(𝑥) = 𝑥 (since

𝒞 has size 1, it does not make sense to talk about one-key or bounded-collusion

security levels, as there is only one circuit). This does so in the following way, using

a traditional encryption scheme, ES.

∙ Setup(1𝜅): Let (𝑠𝑘1, 𝑝𝑘1) = 𝐸𝑆.𝑆𝑒𝑡𝑢𝑝(1𝜅), and (𝑠𝑘2, 𝑝𝑘2) = 𝐸𝑆.𝑆𝑒𝑡𝑢𝑝(1𝜅) be

two key pairs generated by the traditional encryption scheme. Then, output
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(𝑀𝑆𝐾,𝑀𝑃𝐾) = ((𝑠𝑘1, 𝑠𝑘2), (𝑝𝑘1, 𝑝𝑘2)).

∙ KeyGen(𝑀𝑆𝐾): Let 𝑏
$←− (0, 1). Then, for 𝑀𝑆𝐾 = (𝑠𝑘0, 𝑠𝑘1), output 𝐹𝐾 =

(𝑏, 𝑠𝑘𝑏).

∙ Encrypt(𝑀𝑃𝐾, 𝑥): Output (𝐸𝑆.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘0, 𝑥), 𝐸𝑆.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘1, 𝑥)) as the

ciphertext, for 𝑀𝑃𝐾 = (𝑝𝑘0, 𝑝𝑘1).

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): Output 𝐸𝑆.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑠𝑘, 𝑐𝑡𝑏), for 𝐹𝐾 = (𝑏, 𝑠𝑘) and 𝐶𝑇 =

(𝑐𝑡0, 𝑐𝑡1).

This can also be thought of as turning a traditional encryption scheme into an

interactive non-committing encryption scheme [16]. This will be useful to provide

functional encryption schemes with adaptive simulation security.

Sahai-Seyalioglu (SS) Scheme

Sahai and Seyalioglu in 2010 created a one-key functional encryption scheme using

public-key encryption, universal circuits, and randomized encodings, which supports

any class of circuits [61]. Garbled circuits are a randomized encoding, and so we give

the scheme in terms of garbled circuits.

This scheme works as follows, given a base encryption scheme BES, for a circuit

family 𝒞𝜆, where 𝜆 is the length of the circuit.

∙ Setup(1𝜅): Run the base encryption scheme 2𝜆 times. We then output 𝜆 pairs

of public keys as the MPK, and similarly for secret keys as the MSK.

(𝑀𝑆𝐾𝑖,𝑗,𝑀𝑃𝐾𝑖,𝑗)← 𝐵𝐸𝑆.𝑆𝑒𝑡𝑢𝑝(1𝜅) 𝑖 ∈ [𝜆], 𝑗 ∈ [2]

Output (𝑀𝑆𝐾,𝑀𝑃𝐾) = (((𝑀𝑆𝐾𝑖,0,𝑀𝑆𝐾𝑖,1))𝑖∈[𝜆], ((𝑀𝑃𝐾𝑖,0,𝑀𝑃𝐾𝑖,1))𝑖∈[𝜆]).

∙ KeyGen(𝑀𝑆𝐾, 𝐶): For each bit of 𝐶, output the corresponding 𝑀𝑆𝐾 for

the base encryption scheme. Output 𝐹𝐾 = (𝑀𝑆𝐾𝑖,𝐶𝑖
)𝑖∈[𝜆].

42



∙ Encrypt(𝑀𝑃𝐾, 𝑥): Let 𝑈𝑥 be a universal circuit for 𝒞𝜆. Then, if 𝐺𝑆 is a

garbling scheme, let (𝐺, {𝑎𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1})← 𝐺𝑆.𝐺𝑎𝑟𝑏𝑙𝑒(𝑈𝑥). Now, encrypt each

label with the corresponding key, where 𝑀𝑃𝐾 = ((𝑀𝑃𝐾𝑖,0,𝑀𝑃𝐾𝑖,1))𝑖∈[𝜆].

𝐸𝐿𝑖,𝑏 = 𝐵𝐸𝑆.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝑃𝐾𝑖,𝑏, 𝑎𝑖,𝑏) 𝑖 ∈ [𝜆], 𝑏 ∈ {0, 1}

Now, output 𝐺 and {𝐸𝐿𝑖,𝑏}𝑖∈𝜆,𝑏∈{0,1}.

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): If 𝐹𝐾 = {𝑀𝑆𝐾𝑖,𝑏}𝑖∈[𝜆], and 𝐶𝑇 = 𝐺, {𝐸𝐿𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1},

then let 𝑙𝑖 = 𝐵𝐸𝑆.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑀𝑆𝐾𝑖,𝑏, 𝐸𝐿𝑖,𝑏) for 𝑖 ∈ [𝜆]. Now, for the garbling

scheme 𝐺𝑆, output 𝐺𝑆.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐺, {𝑙𝑖}𝑖∈[𝜆]).

The Base Encryption Scheme can either be a traditional encryption scheme, or the

singleton FE scheme, which provides adaptive simulation security. If the singleton

FE scheme is used, the above scheme changes the KeyGen step to additionally call

KeyGen for the singleton FE scheme.

As we will see in Section 5.1, the Sahai-Seyalioglu scheme leads to large ciphertexts

which grow with the size of the circuit, and more specifically, the size of a universal

circuit for 𝒞𝜆. However, it has the advantage that it relies only on a traditional

encryption scheme, which is well studied and understood.

The Goldwasser-Kalai-Popa-Vaikuntanathan-Zeldovich (GKPVZ) Scheme

In 2013, Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich showed how to

create a one-key functional encryption scheme using any fully homomorphic encryp-

tion scheme and any attribute-based encryption (ABE) scheme as black boxes [30].

Additionally, their scheme has the property that the ciphertexts do not grow with

the size of the circuit, unlike the SS scheme.

This makes use of an ABE scheme where, given 𝑐𝑡 = 𝐴𝐵𝐸.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑦,𝑚0,𝑚1)

and 𝑘 = 𝐴𝐵𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑔), 𝐴𝐵𝐸.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑡, 𝑘) outputs 𝑚0 if 𝑔(𝑦) = 0, and else 𝑚1.

∙ Setup(1𝜅): This algorithm runs the Setup algorithms on each of the FHE

scheme and the ABE scheme.
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∙ KeyGen(𝑀𝑆𝐾, 𝐶): This algorithm outputs 𝐶 and 𝑛 ABE keys, where 𝑛 is the

length of 𝐸(𝑓(𝑥)) in the FHE scheme. The ABE keys are 𝐴𝐵𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑓 ′
𝑖),

where for the 𝑖-th bit of 𝐸(𝑓(𝑥)), 𝑓 ′
𝑖(𝐸(𝑥)) = (𝑓 ′(𝐸(𝐹 (𝑥)))𝑖 = 0).

∙ Encrypt(𝑀𝑃𝐾, 𝑥): The ciphertext for a message 𝑥 is 𝑥 encrypted under an

FHE scheme, along with a garbled circuit for the FHE.Decrypt function with the

secret key for the FHE scheme included. It also includes the ABE ciphertexts

𝐴𝐵𝐸.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑥, 𝑙𝑖,0, 𝑙𝑖,1), where 𝑙𝑖,𝑏 is the label for the garbled circuit for the

𝑖-th bit, with value 𝑏.

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): This algorithm uses the ABE.Decrypt function with the

ABE keys and ciphertexts to get the labels for the garbled circuit. The algorithm

now uses these labels to evaluate the garbled circuit to obtain the decrypted

value, 𝑓(𝑥).

The advantage of this scheme is that the ciphertexts no longer grow with the size

of the circuits to be computed. However, this now relies on lattice-based cryptog-

raphy, fully homomorphic encryption, and attribute-based encryption, all of which

are significantly more powerful, and less well studied, constructs than the public-key

encryption of the earlier scheme. It would be interesting to explore the trade-off

between less efficient components, and the savings of an improved protocol.

3.3.2 Bounded-Collusion Functional Encryption

As with one-key functional encryption schemes, there are multiple bounded-collusion

functional encryption schemes. We present them here, and discuss their advantages

and disadvantages.

Stateful Scheme

The simplest way to extend the one-key functional encryption schemes to support

𝑞 > 1 functional keys is to just use multiple copies of the one-key scheme. Then, to

issue functional keys, the stateful scheme outputs a functional key to one of these
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schemes. However, in order to be secure for up to 𝑞 functional keys, we need to make

sure that each functional key is for a different one-key scheme. To do this requires

the scheme to keep track of which keys it has given out. If 𝑂𝑛𝑒𝑄𝐹𝐸 is a one-key

scheme, the stateful scheme does the following, to be secure for 𝑞 functional keys.

∙ Initialize: Set 𝑠𝑡𝑎𝑡𝑒 = 0.

∙ Setup(1𝜅): Run setup for the one-key scheme 𝑞 times.

(𝑀𝑆𝐾𝑖,𝑀𝑃𝐾𝑖)← 𝑂𝑛𝑒𝑄𝐹𝐸.𝑆𝑒𝑡𝑢𝑝(1𝜅) 𝑖 ∈ [𝑞]

Output (𝑀𝑆𝐾,𝑀𝑃𝐾) = ((𝑀𝑆𝐾𝑖)𝑖∈[𝑞], (𝑀𝑃𝐾𝑖)𝑖∈[𝑞]).

∙ KeyGen(𝑀𝑆𝐾, 𝐶): Let 𝐹𝐾 = (𝑠𝑡𝑎𝑡𝑒, 𝑂𝑛𝑒𝑄𝐹𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾𝑠𝑡𝑎𝑡𝑒, 𝐶)).

Then, set 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒 + 1, and output 𝐹𝐾.

∙ Encrypt(𝑀𝑃𝐾, 𝑥): Output 𝐶𝑇 = (𝑂𝑛𝑒𝑄𝐹𝐸.𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑀𝑃𝐾𝑖, 𝑥))𝑖∈[𝑞].

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): If 𝐹𝐾 = 𝑠𝑡𝑎𝑡𝑒, 𝑘, output 𝑂𝑛𝑒𝑄𝐹𝐸.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑘, 𝐶𝑇𝑠𝑡𝑎𝑡𝑒).

Note that we have a new method Initialize which sets the state to 0, and each

time a key is given out, the state increases. This also means that after 𝑞 keys are

given out, it will not be possible to give any more.

Here, the master secret key, master public key, and ciphertext are 𝑞 times as

large as their one-key counterparts, while the functional key’s size is only increased

additively by log 𝑞. We also see that the Setup and Encrypt algorithms also take 𝑞

times as long, while the other two are not significantly affected.

Compared to the GVW scheme, the ciphertexts are much smaller. In the GVW

scheme, 𝑁 = 𝑂(𝐷2𝑞4) ciphertexts are needed to compute a depth 𝐷 circuit. This is

a huge saving, especially as 𝑞 grows (see Section 5.2.1 for more discussion of choice of

𝑁). This however does require the key authority to keep state, in contrast with the

GVW protocol.
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Gorbunov-Vaikuntanathan-Wee (GVW) Scheme

Gorbunov et al. in 2012 made a bounded-collusion functional encryption scheme,

using a one-key functional encryption scheme as a black box, together with Shamir

secret sharing, and optionally a pseudorandom number generator [32]. This scheme

depends on a few parameters, 𝑁 , 𝑡, 𝑣, and 𝑆. We discuss the choice of these param-

eters in Section 5.2.1.

The GVW scheme supports computing polynomials up to degree 𝐷, for a fixed 𝐷,

over a finite field F. The idea behind the GVW scheme is to use the BGW multiparty

computation scheme to encode inputs 𝑥𝑖 as 𝑡 degree polynomials 𝑝𝑖 over F, and then

to calculate 𝐶({𝑥𝑖}). We note that 𝐶({𝑝𝑖(𝑦)}) is now a degree 𝑡𝐷 polynomial over

F. Now, if we have 𝑡𝐷 + 1 values for this, we can use polynomial interpolation to

recover the value of 𝐶({𝑥𝑖}). This is exploiting the fact that in the BGW scheme,

polynomials of degree at most log𝑁 , where there are 𝑁 parties, can be calculated

without any interaction.

The GVW scheme, instead of computing 𝐶, calculates a closely related circuit

𝐺𝐶,Δ, for 𝑍𝑖 ∈ F, where,

𝐺𝐶,Δ(𝑥, 𝑍1, . . . , 𝑍𝑆) = 𝐶(𝑥) + Σ𝑖∈Δ𝑍𝑖.

Here, the 𝑍𝑖 serve to add extra randomness to the output. This is needed to

achieve simulation security (either adaptive or non-adaptive). Now, given a one-key

FE scheme 𝑂𝑛𝑒𝑄𝐹𝐸, the GVW scheme is as below.

∙ Setup(1𝜅): Run the OneQFE setup 𝑁 times.

(𝑀𝑆𝐾𝑖,𝑀𝑃𝐾𝑖)← 𝑂𝑛𝑒𝑄𝐹𝐸.𝑆𝑒𝑡𝑢𝑝(1𝜅) 𝑖 ∈ [𝑁 ]

Output (𝑀𝑆𝐾,𝑀𝑃𝐾) = ((𝑀𝑆𝐾𝑖)𝑖∈[𝑁 ], (𝑀𝑃𝐾𝑖)𝑖∈[𝑁 ]).

∙ KeyGen(𝑀𝑆𝐾, 𝐶):

1. Pick a set Γ
$←− [𝑁 ] uniformly at random, of size 𝑡𝐷 + 1.
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2. Pick a set ∆
$←− [𝑆] uniformly at random, of size 𝑣.

3. 𝐹𝐾𝑖 ← 𝑂𝑛𝑒𝑄𝐹𝐸.𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾𝑖, 𝐺𝐶,Δ) 𝑖 ∈ Γ.

4. Output (Γ,∆, (𝐹𝐾𝑖)𝑖∈Γ).

∙ Encrypt(𝑀𝑃𝐾, 𝑥): If 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑙),

1. For 𝑖 ∈ 1, . . . , 𝑙, pick a random 𝑡-degree polynomial 𝜇𝑖 over F with constant

term 𝑥𝑖.

2. For 𝑖 ∈ 1, . . . , 𝑆, pick a random 𝑡𝐷-degree polynomial 𝜁𝑖 over F with

constant term 0.

3. 𝐶𝑇𝑖 ← 𝑂𝑛𝑒𝑄𝐹𝐸.𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑀𝑃𝐾𝑖, (𝜇1(𝑖), . . . , 𝜇𝑙(𝑖), 𝜁1(𝑖), . . . , 𝜁𝑆(𝑖))).

4. Output (𝐶𝑇𝑖)𝑖∈{1,...,𝑁}.

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): If 𝐹𝐾 = (Γ,∆, {𝑘𝑖}𝑖∈Γ), use polynomial interpolation to

find the unique polynomial 𝑝 such that 𝑝(𝑖) = 𝑂𝑛𝑒𝑄𝐹𝐸.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑘𝑖, 𝐶𝑇𝑖) for

all 𝑖 ∈ Γ, where 𝑝 has degree at most 𝑡𝐷. Output 𝑝(0).

Where the above algorithm chose Γ,∆ uniformly at random, using a pseudoran-

dom number generator instead ensures that a function receives the same functional

key if queried multiple times. Additionally, while this scheme above only works for

bounded degree polynomials, it can be bootstrapped to any polynomial sized circuit

via randomized encodings [40, 4]. As we do not use them here, we leave the details

to the paper by Gorbunov et al. [32].

The GVW scheme has the advantage that, unlike the stateful scheme, it does

not need to keep state. This means that the key authority both doesn’t need to keep

track of keys being issued, but also admits the possibility that there could be multiple

parties issuing functional keys, and without being required to keep a synchronized

shared state, other than the shared master secret key. It also has another advantage

over the stateful scheme. The stateful scheme is limited to issuing 𝑞 functional keys

to achieve its security. If it issues more than 𝑞 keys, there is a significant chance (1
𝑞
)

that security is broken, depending on which keys are shared. The GVW scheme can
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issue more than 𝑞 keys, and still be secure against a 2-key collusion. Rather, the

GVW scheme needs 𝑞 keys collaborating to break security. As long as the parties are

relatively unlikely to collude, the GVW scheme can issue more than 𝑞 keys and still

remain highly secure as long as one party does not obtain 𝑞 keys.

The GVW scheme has the disadvantage, as we will discuss in Section 5.2.1, that

the size of ciphertexts, master public key, and master secret key grow with 𝑞4 and 𝐷2,

and the functional key with 𝑞2. If using bootstrapping, the value of 𝐷 is bounded,

and so the 𝐷2 term disappears.

Agrawal-Rosen Online-Offline Functional Encryption

In a recent work, Agrawal and Rosen defined online-offline functional encryption [3],

where most of the work is done offline ahead of time, and the encrypt stage takes

linear time in the message size. Additionally, the total ciphertext sizes (including

the offline stage) grows with 𝑞2|𝐶|, where |𝐶| is the size of the circuit to be com-

puted. This is asymptotically significantly better than the GVW scheme using the

SS scheme as the base one-key FE scheme, which grows as 𝑞4|𝐶|. This scheme exploits

similarities between the dual Regev Ring Learning with Errors cryptosystem [57, 29],

and symmetric key ciphertexts in the Brakerski-Vaikuntanathan fully homomorphic

encryption cryptosystem [15]. They use this to first support linear functions. They

then add more information that both allows multiplication to be decrypted, and also

restricts what can be recovered from the fully homomorphic encryption scheme.

This scheme does have a couple disadvantages. First, compared to the GVW

scheme, it makes slightly stronger, if still well accepted, assumptions about the hard-

ness of lattice problems. Second, implementations of fully homomorphic encryption

often have large constant factors [28, 37]. This scheme also does not use a one-key

functional encryption scheme as a black box, which can be thought of as an advan-

tage, in that redundancy can be removed, but also a disadvantage in that it does not

gain advantages of better one-key functional encryption schemes. For example, the

GVW scheme, using the GKPVZ scheme as a black box, still has ciphertexts growing

with 𝑞4, but it no longer grows with |𝐶|.
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Chapter 4

A Framework for Investigating

Functional Encryption (FIFE)

We built the Framework for Investigating Functional Encryption (FIFE), in order to

address the dearth of information on the practicality of functional encryption. FIFE

allows for measuring the performance of different functional encryption schemes and

evaluating their dependence on different building blocks. We aimed to make it easy

to compare different functional encryption schemes, and determine how theoretical

efficiency translates into practice.

Choice of Language FIFE [70] was written in C++. This language was chosen for

a few reasons. First, the SS scheme given in Section 3.3.1 heavily uses Yao’s garbled

circuits, and we wanted to use the existing library libgarble [36], a C library improving

on the library JustGarble [7], to do so. Next, the Palisade library is in C++, and

supports many tools and primitives for lattice-based cryptography [60]. While we

did not use it, many of the future directions for this work, discussed in Chapter 6,

involve lattice-based cryptography, for which Palisade is a good fit. Finally, as a

library designed to measure performance of various functional encryption schemes,

C++ offered us many useful features, such as templates, while still giving us fast

performance.
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Existing Libraries Utilized Our library relies on existing libraries for specialized

tasks, so that we did not have to implement everything from scratch. We summarize

our external dependencies here, and discuss each one in more detail below.

We used libgarble for constructing and evaluating garbled circuits [36]. We used

crypto++ for public-key and secret-key encryption schemes, including RSA and AES

[18]. We used msgpack to write and read keys and ciphertexts from file [25]. Finally,

we used NTL to handle polynomials and do polynomial interpolation [69].

Library Structure FIFE was constructed in a modular fashion, so that we could

additionally make a detailed study of the different choices of building blocks and

parameters for specific functional encryptions schemes.

Our library has four major parts. Each part corresponds to a major choice that

can be made about functional encryption implementations. The first part corresponds

to a choice of traditional encryption scheme. The next part is for what class of

circuits to use. Then, there are different one-key FE schemes to use. Finally, there

are bounded-collusion functional encryption schemes. While we have not included

multiple implementations for each of these choices, our implementation is structured

in a way to allow additional options to be easily added. In addition to these parts,

our library also heavily uses garbled circuits. Additionally, we added the ability to

write the keys and ciphertexts to file, to allow them to be communicated. Also, we

wrote a test suite to ensure the correctness of our constructions. We describe each of

these in more detail below.

4.1 Traditional Encryption Schemes

Our library offers the user a choice of traditional encryption schemes, including both

public-key encryption and secret-key encryption. We chose to present a uniform

interface for all such schemes, so that they can be used in a black box fashion. We

did this in the following way.

First, we created a base class for traditional encryption schemes. The templated
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class PKEBase has the default interface, which takes as a parameter a description of

the PublicKey, SecretKey, and CipherText types for a specific encryption scheme. For

a secret-key encryption scheme, the PublicKey and SecretKey are the same, but this

allows us to create a more general interface for any traditional encryption scheme.

This class then uses these types to specify the Setup, Encrypt, and Decrypt func-

tions, as described in Section 3.2.2, where the plaintext is always a byte array across

encryption schemes. This design allows us to use one interface for all traditional

encryption schemes, without restricting the types of keys or ciphertexts.

This design also allows the use of preexisting implementations of these traditional

encryption schemes. The only thing required is to create a wrapper which fits this

interface for each encryption scheme chosen. We chose to do so for a public-key

encryption scheme, RSA, and a secret-key encryption scheme, AES. We chose these

schemes for their popularity and prevalence. We started with the library crypto++,

a standard library used for cryptography in C++ [18].

For RSA, we chose to use the RSA_OAEP_SHA option, which is RSA with

Optimal Asymmetric Encryption Padding, using SHA [8]. We made this choice as

it has been proven to be secure, assuming RSA is hard [24]. For AES, we chose to

use AES in CFB Mode, or cipher feedback mode. We chose this mode as it does not

require the message to be padded.

4.2 Circuits and Universal Circuits

An important part of our scheme is the circuit families it supports. We started by

supporting three classes of circuits. First is parity circuits. A parity circuit computes

the parity of some subset of the input bits. This class is equivalently inner products

between the message and a vector in Z2.

Next, we supported inner product circuits modulo and prime 𝑝. This is a gen-

eralization of the above parity circuits. These circuits also work well for the GVW

scheme, as that scheme computes polynomials over a finite field, and Z𝑝 is a natural

finite field, with inner product as a simple polynomial to evaluate.
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Circuit Type SS Scheme Stateful Scheme GVW Scheme
Hamming Distance yes yes no
Inner Product mod 𝑝 yes yes yes
Parity yes yes no

Table 4.1: The types of circuits implemented, and which schemes support them.

We also support computing Hamming distance. These circuits give the Hamming

distance between the message and a fixed string specified by the circuit.

Of these three, we didn’t support the first and third for the GVW scheme, as they

do not compute over a finite field large enough. The circuit types we implemented

and the schemes which support each are summarized in Table 4.1.

We made universal circuits for each of these classes of circuits. However, we did

not implement the general universal circuits we discussed in Section 3.2.4. These

circuits were sufficient to do an initial study into the performance of the functional

encryption schemes, while still providing interesting functionalities. Also, given our

results in Sections 5.1 and 5.2, we saw that the size of the ciphertexts was already

too large for large circuits, without considering using a universal circuit.

To build a universal circuit for a class of circuits, we broke it down into standard

components, both for ease of building, and for ease of verifying correctness. These

utility circuits also allow each component to be separately tested. For each of the

components discussed below, we speak of them taking in some inputs, and having an

output. What we mean by this is that given some wires in a circuit being built, the

component adds on to that circuit a subcircuit which applies the specific operation

to the input wires, with the result of that operation going on the output wires.

ZeroOne Gate The ZeroOne gate takes in two bits, and outputs 1 if the first bit

is 0 and the second is 1. This was added for convenience, as it is not a standard gate

supported by libgarble. We implemented this with an XOR gate and an AND gate.

We could have instead added this gate to libgarble. We chose not to do so since, as

we will discuss in Section 4.6.1, we don’t write the garbled table for XOR gates to

file, it does not increase the size of our ciphertexts by much. This also allows us to

use the libgarble library as is.
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Mux The mux takes two inputs of 𝑛 bits and a decider bit, and outputs one of the

inputs based on the decider bit. We implemented this as 𝑛 single-bit muxes.

Add The adder takes two 𝑛-bit integers in, and outputs an (𝑛 + 1)-bit integer of

their sum. We implemented this as a half-adder, which adds two bits and outputs

their sum and carry bit, followed by 𝑛 − 1 full-adders, which add two bits, along

with the carry from the previous addition, and outputs the result and a new carry

bit. Additionally, we used the design by Kolesnikov, Sadeghi, and Schneider, which

is optimized for garbled circuit efficiency [47].

Subtract This component takes in two numbers, and outputs the first minus the

second. It also outputs a bit corresponding to the sign of the result. This is struc-

turally very similar to the adder, but has some modifications to subtract instead of

add. This design was also due to Kolesnikov et al. [47].

Reduce mod 𝑝 This component takes a number between 0 and 2𝑝, for some 𝑝,

and outputs a number equivalent modulo 𝑝. This is implemented as subtracting 𝑝,

checking the sign of the result, and using a mux to choose based on that the original

or the new result.

Add mod 𝑝 This component takes two numbers and returns their sum reduced

mod 𝑝. We do this by adding the numbers, then reducing mod 𝑝, with our above

described components. It assumes that the inputs are already reduced mod 𝑝.

Double mod 𝑝 This component takes a number, and returns twice that number

reduced mod 𝑝. We do this by adding a wire fixed to 0 at the end of the input, then

reducing it mod 𝑝. After this reduction, we now know the highest order bit is a 0, so

we can ignore it.

Multiply mod 𝑝 This component takes two numbers less than 𝑝, and outputs their

product reduced mod 𝑝. We implement this as follows. Here, we let 𝑛 = ⌊log 𝑝 + 1⌋,
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the number of bits in the numbers. Given two numbers, 𝑎 and 𝑏, we go through the

bits of 𝑏 from highest-order to lowest-order, and accumulate the correct number of

copies of 𝑎. We use our above double mod 𝑝, add mod 𝑝, and mux components to do

the following.

1. Let 𝑠𝑢𝑚 = 0, and 𝑏𝑖𝑡 = 𝑛− 1

2. While 𝑏𝑖𝑡 ≥ 0,

(a) 𝑠𝑢𝑚 = (𝑠𝑢𝑚 * 2) mod 𝑝.

(b) If 𝑏[𝑏𝑖𝑡] = 1, let 𝑠𝑢𝑚 = (𝑠𝑢𝑚 + 𝑎) mod 𝑝.

(c) Let 𝑏𝑖𝑡 = 𝑏𝑖𝑡− 1.

3. Output 𝑠𝑢𝑚.

Add in 𝐺𝐹 (2𝑛) This component takes two elements of 𝐺𝐹 (2𝑛), and returns their

sum. Here, we use an 𝑛-bit representation for elements of 𝐺𝐹 (2𝑛), corresponding to

the 𝑥𝑖 terms of Z2[𝑥]/𝑝(𝑥), for an irriducible degree-𝑛 polynomial 𝑝(𝑥). This sum is

just the XOR of the corresponding bits of the two elements. Note that we do not need

the polynomial 𝑝(𝑥) to perform addition in 𝐺𝐹 (2𝑛). Also, note that since addition

and subtraction are equivalent in 𝐺𝐹 (2𝑛), this is also subtraction in 𝐺𝐹 (2𝑛).

Reduce in 𝐺𝐹 (2𝑛) This component takes an element of 𝐺𝐹 (2𝑛), and a bit corre-

sponding to whether it needs to be reduced, and outputs the element which is reduced

if necessary. This also requires as input the irriducible polynomial for the represen-

tation of 𝐺𝐹 (2𝑛). This is implemented as an XOR gate and a mux for each term in

the irriducible polynomial. There will usually be 2 or 4 such terms [64].

Multiply in 𝐺𝐹 (2𝑛) This component takes two elements of 𝐺𝐹 (2𝑛), and returns

their product. This also requires as input the irriducible polynomial for the repre-

sentation of 𝐺𝐹 (2𝑛). We implemented this similarly to multiplication mod 𝑝, except

instead of subtracting 𝑝 to reduce, we add the irriducible polynomial. Also, instead

54



of checking whether a number is greater than 𝑝, we only need to check if the product

has a degree 𝑛 term, which requires fewer gates.

Add mod 232 This component takes two 32-bit numbers, and adds them mod 232.

It is implemented as adding the numbers using the previous component, and ignoring

the highest order bit of the sum.

Multiply mod 232 This component takes two 32-bit numbers, and multiplies them

mod 232. This is done as in multiplying mod 𝑝, but we do not reduce mod 𝑝, and

instead ignore terms of 2𝑖 for 𝑖 ≥ 32.

Hamming distance This component takes two inputs with 𝑛 bits, and outputs

the Hamming distance between them. This is implemented as first XORing the cor-

responding bits together, then adding the number of differences in a tree-like fashion,

adding neighboring numbers together until we have one sum left. This allows us to

add numbers with fewer bits lower in the tree, to save gates used in the circuit. This

circuit for counting number is similar to the parallelized counter circuit of Huang et

al. [39].

The complexity of each component is described in Table 4.2. We used these utilities

to implement our universal circuits for the circuit families in Table 4.1. For parity

circuits, we first had AND gates between the message and our circuit description, and

then took the XOR of all of those outputs. For inner product circuits, we multiplied

each pair of elements from the message and circuit description mod 𝑝, and then added

them all up mod 𝑝, using our utilities for those. Finally, for Hamming distance, we

used our utility for Hamming distance. The sizes of these circuits is given in Table

4.3.
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Component Inputs Total Gates non-XOR gates
ZeroOne (1,1) 2 1
Mux (n,n,1) 4𝑛 2𝑛
Add (n,n) 5𝑛− 3 𝑛
Subtract (n,n) 6𝑛 𝑛
Reduce mod 𝑝 n 10𝑛− 4 3𝑛− 2
Add mod 𝑝 (n,n) 15𝑛 + 3 4𝑛 + 1
Double mod 𝑝 n 10𝑛 + 6 3𝑛 + 1
Multiply mod 𝑝 (n,n) 29𝑛2 + 9𝑛 9𝑛2 + 2𝑛
Add in 𝐺𝐹 (2𝑛) (n,n) 𝑛 0
Reduce in 𝐺𝐹 (2𝑛) (n,c†) 𝑐 0
Multiply in 𝐺𝐹 (2𝑛) (n,n,c†) 5𝑛2 + 𝑛𝑐 2𝑛2

Add in 232 (32,32) 157 32
Multiply in 232 (32,32) 9120 3072
Hamming Distance (n,n) 8𝑛‡ 2𝑛‡

Table 4.2: Number of gates and non-free gates for each circuit component, in terms
of their input length(s). †c is the number of terms in the irriducible polynomial, and
is usually 2 or 4 [64]. ‡The gates for Hamming distance are not exact, and instead
upper bounds.

Component Inputs Total Gates non-XOR gates
Hamming Distance n bits 8𝑛† 2𝑛†

Parity n bits 2𝑛 𝑛
Inner Product mod 𝑝 e n-bits elements 𝑒(29𝑛2 + 24𝑛 + 3) 𝑒(9𝑛2 + 6𝑛 + 1)

Table 4.3: Number of gates and non-free gates for each circuit component, in terms
of their input length(s). †The gates for Hamming distance are not exact, and instead
upper bounds.
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4.3 One-key Functional Encryption

4.3.1 Singleton FE Scheme

The singleton FE scheme is the FE scheme that encrypts only one circuit, the identity

circuit, where 𝐶(𝑥) = 𝑥 as defined by Gorbunov et al. [32]. The implementation of

this scheme was straightforward, and just follows the description in Section 3.3.1. We

used the pair data structure from the C++ standard library to hold the pairs of keys

and ciphertexts, and created a struct to hold the bit and key from KeyGen.

4.3.2 Sahai-Seyaglioglu Scheme

We implemented the SS scheme for one-key functional encryption, as described in

Section 3.3.1. We started out by initializing the scheme for a specific class of circuits.

Then, the four algorithms were implemented as follows.

∙ Setup(1𝜅): The Setup algorithm implementation is straightforward from the

description, and creates a vector of pairs of public keys and secret keys as the

master public key and master secret key, respectively.

∙ KeyGen(𝑀𝑆𝐾, 𝐶): The KeyGen algorithm outputs functional keys, which

also include a description of the circuit to be evaluated, in addition to the secret

keys corresponding to the description. This means that in this implementation,

it is not possible to give someone a key without them knowing what function

it corresponds to. Here, the circuit is a vector of integers that are 0 or 1, and

the functional key is a struct with that vector and a vector of secret keys of the

base encryption scheme.

∙ Encrypt(𝑀𝑃𝐾, 𝑥): The Encrypt algorithm starts by generating a universal

circuit for the class of circuits, that takes 𝑥 and a description of a circuit 𝐶.

It then garbles this circuit to produce a garbled circuit 𝐺. Next, we take the

labels corresponding to a circuit description 𝐶, and encrypt the label for bit

𝑖 for 𝑏 with 𝑀𝑃𝐾𝑖,𝑏, where 𝑏 ∈ {0, 1}. The ciphertext now consists of three
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parts: 𝐺, the encrypted labels for a circuit description, and the input labels for

𝐺 corresponding to 𝑥. Here, the ciphertext is a struct with a garbled circuit

from libgarble, a vector of labels for 𝑥, and a vector of pairs of ciphertexts of

the base encryption scheme for the encrypted labels.

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): The Decrypt algorithm uses the functional key to decrypt

the labels corresponding to the circuit description. Then, combined with the

labels for from the ciphertext, it evaluates the garbled circuit, and outputs the

computed result.

4.4 Bounded-Collusion Functional Encryption

4.4.1 Stateful Scheme

The implementation of our stateful scheme is just a straightforward translation of the

scheme described in Section 3.3.2, where the keys and ciphertexts are vectors of the

base one-key scheme, and the functional key is a struct with an integer corresponding

to which scheme it corresponds to and a one-key scheme functional key.

4.4.2 GVW scheme

We implemented the GVW scheme for bounded-collusion FE. This uses the one-

key scheme as a black box. When initializing the scheme, it sets up the security

parameters, 𝑁 , 𝑡, 𝑣, and 𝑆, as discussed in Section 3.3.2, and the one-key scheme

used. See Section 5.2.1 for more information about the choice of these parameters.

It also takes in the degree 𝐷 of the polynomials to be computed over the inputs and

the number of keys for which it should be secure, 𝑞. We used NTL to make the

polynomials and to perform the polynomial interpolation [69].

We also added in the option to disable using the subsets ∆, and the polynomials

𝜁𝑖. This shrinks the size of the keys and ciphertexts, at the cost of not achieving

simulation security. See Section 5.2.3 for more discussion on the space usage impact

of this choice, and Section 3.3.2 for discussion on the security implications.
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Additionally, we chose not to implement the bootstrap operations, as we only

considered some circuits (see Table 4.1 for which ones we implemented), and these

all had low degree.

∙ Setup(1𝜅): The Setup algorithm is implemented in a straightforward manner

from the description in Section 3.3.2, where the master public key and master

secret key are vectors of the base one-key versions of each.

∙ KeyGen(𝑀𝑆𝐾, 𝐶): The KeyGen algorithm first randomly picks 𝑡𝐷 + 1 of

the one-key master secret keys that comprise the master secret key. Then, if

using ∆, it picks 𝑣 elements of [𝑆] randomly, as ∆, and includes it in the circuit

description. It now uses the one-key KeyGen algorithm with the 𝑡𝐷 + 1 master

secret keys to generate 𝑡𝐷+1 one-key functional keys for this circuit description,

and returns them. The functional key is a struct with a vector containing Γ,

which says which 𝑡𝐷+ 1 one-key schemes the key corresponds to, a vector with

∆, which says which 𝑣 values to add, and a vector of one-key functional keys.

∙ Encrypt(𝑀𝑃𝐾, 𝑥): The Encrypt algorithm, on an input message 𝑥 = {𝑥𝑖},

for each 𝑖, picks a random degree 𝑡 polynomial 𝑝𝑖, and sets the constant co-

efficient for the polynomial to 𝑥𝑖. Now, if using ∆, it also generates 𝑆 ran-

dom degree 𝑡𝐷 polynomials, 𝜁𝑖, with constant coefficient 0. Then, for each

𝑗 ∈ {1, . . . , 𝑁}, it uses the one-key Encrypt algorithm on the inputs 𝑝𝑖(𝑗), and

if using ∆, 𝜁𝑖(𝑗), and generates 𝑁 one-key ciphertexts, and outputs those. The

ciphertext is just a vector of one-key ciphertexts.

∙ Decrypt(𝐹𝐾, 𝐶𝑇 ): The Decrypt algorithm, given 𝑡𝐷 + 1 one-key FE secret

keys, uses them to call the one-key Decrypt algorithm on each of the corre-

sponding 𝑡𝐷 + 1 ciphertexts. Then, it uses these pairs of 𝑗, and the circuit

𝐶({𝑝𝑖(𝑗)}) to do polynomial interpolation to get the polynomial 𝐶({𝑝𝑖(𝑥)}).

Then, we evaluate that at 0, to get 𝐶({𝑝𝑖(0)}) = 𝐶({𝑥𝑖}) = 𝐶(𝑥). If we are

using ∆, the process is exactly the same, since 𝜁𝑖(0) = 0 for each 𝑖, and so the

resulting polynomial still has the same value at 0.
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4.5 Garbled Circuits

We decided to use libgarble to garble circuits [36]. This library is based on JustGar-

ble [7]. However, libgarble also includes half gates [74], in addition to the existing

improvements in JustGarble, like free-XOR for garbled circuits [48]. We use it in

half-gates mode, which allows us to reduce the space that the garbled circuits take.

Using libgarble limits our security to that of AES128. This is the case since

libgarble uses AES128 as its primary mean of encrypting and decrypting labels. Thus,

any system we build using it cannot be more secure than AES128.

4.6 File Input and Output for Keys and Ciphertexts

In order to have a usable encryption scheme, we need to support setup, key genera-

tion, encryption, and decryption to be performed by separate parties. Phrased more

concretely, we need to be able to write and read the master secret key, master public

key, functional keys, and ciphertexts to and from file, so that they can be transferred

between parties.

We write to file in two stages. First, we use msgpack to pack our objects into the

msgpack format, a binary serialization format [25]. Then, we write this packed object

to file. To read from file, we do it in reverse order; we first read the file into a buffer,

and then use msgpack to unpack it into the original object.

The msgpack format has some primitive types, such as integers, booleans, and

byte arrays, along with derived types such as arrays. It packs these by generating

a code corresponding to the type of the value and information about it, followed by

their value. For integers, this means that it stores them with only an extra byte of

space. Booleans take exactly one byte, and binary arrays are stored as the length of

the array, followed by the array. Msgpack also supports other types, but we did not

use them [25]. Arrays are implemented similarly to byte arrays, where writes their

length, followed by the items. However, the items in an array are not just binary,

but instead more objects encoded with msgpack. This allows us to easily support
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complex data structures, as long as all of its elements are supported by msgpack.

The msgpack library for C++ also has convenient macros to support reading and

writing many data structures, as long as the types they use already have definitions

for how to write and read them. This meant that we only needed to implement a few

of these, and the rest then were defined by the macros.

RSA keys The first msgpack format we defined was for writing RSA public and

secret keys. The RSA keys consist of two or eight numbers of type Integer, as defined

by crypto++, each of which have up to the security parameter bits. We first imple-

ment writing and reading a crypto++ defined Integer. crypto++ has functions which

gives the size of the encoding of the integer in bytes, and another which encodes it to

a byte array. We used these to encode the Integer as a binary array. To unpack it,

we use the Decode function as defined by crypto++ for the Integer class to turn the

byte array back into an Integer.

Now, since the public key can be represented by two of these Integers, we pack the

public key as an array of two integers. The private key can similarly be represented as

eight Integers, and so we pack them as an array of eight integers. To unpack them, we

just unpack the Integers using our implementation, and use the constructors for the

public and private keys in crypto++ which take two and eight Integers respectively.

AES keys We next defined how to pack and unpack an AES key. Since it is a

secret key scheme, there is only one type of key. AES keys are just binary, so we pack

them as byte arrays of the appropriate length. To unpack them, we similarly unpack

the byte array, and construct the key with that value.

SS Ciphertext We then defined how to pack and unpack the ciphertext for the SS

one query FE scheme. The ciphertext consists of a garbled circuit, a vector of the

labels for the garbled circuit corresponding to the encrypted message, and a vector

of the encrypted labels that will be used for the circuit description. This is then

implemented as an array of size three corresponding to these parts. The last two

parts are just stored as arrays of binary inputs, and are packed and unpacked as we
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have previously discussed.

The garbled circuit is packed first as an array of size two, corresponding to the

structure of the circuit and the cryptographic material. In the first element, we

pack an array of the appropriate size containing the following. First, we pack the

parameters for the garbled circuit, m, n, q, r, and fixed_wires, which are the output

size in bits, input size in bits, number of gates, number of wires, and number of wires

that are fixed to either 0 or 1. We then pack the q gates as the two input wires, the

output wire, and the type of the gate. Finally, we pack the outputs. This part of the

packing is based on how libgarble packs a garbled circuit using msgpack [36].

The second element of the array, with the cryptographic material, is packed as

a single binary block, which contains the garbled tables for the gates of the garbled

circuit, the fixed label used for wires that are fixed to either 0 or 1, and the global

key used for AES by libgarble.

4.6.1 Space Saving

As we will discuss in Section 5.1.5, the above packed ciphertexts, and specifically the

garbled circuit, are very large from a space standpoint. To try and alleviate this, we

tried to minimize the size of this ciphertext. As libgarble uses half gates, for each

gate we only need to store two values in the garbled table. Since it also uses free

XOR, XOR gates do not use the garbled table, and so we also do not write to file the

garbled table for XOR gates. Depending on the number of XOR gates in the circuit,

this can cut the space usage significantly. We also noticed that we could make similar

savings for NOT gates by implementing them as an XOR gate with the fixed zero

wire.

We also investigated the possibility of reusing input labels for the GVW bounded-

collusion FE scheme. The idea is that since this ciphertext consists of many copies

of the one key ciphertext, and to decrypt it we would plug the same function into

all of them, we can use the same labels across all these ciphertexts for the circuit

description. However, as we will discuss in Section 5.1.5, we determined that this was

a very small saving. Additionally, implementing it would mean having a non-modular
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implementation of writing the ciphertexts for the GVW scheme to file, and we decided

it was not worth that cost.

4.7 Testing Framework

To make sure our code was correct, we used Google Test, or gtest, to make a test

suite [21]. We wrote a few classes of tests. First, we wrote tests to ensure that our

various circuit utilities correctly computed the circuits they were supposed to build

when garbled. For each test, we created a new garbled circuit and initialized it, ran

the circuit utility with the appropriate inputs, and then finished building the garbled

circuit, garbled, and evaluated it. We then checked that the value returned was the

value we expected to get. We also used this to ensure that each implemented FE

scheme worked correctly.

We also wrote tests to ensure that writing and reading keys from files was working

correctly. For each object that we support writing to file, we tested this by comparing

the object that was written to file and read against the one that stayed in memory.

For the traditional encryption schemes, we generated keys, wrote them to file and

read them from file, and ensured that these keys worked with the keys that were in

memory, and gave the same results. For the FE schemes, we did the same thing, but

for each of the master secret key, master public key, functional key, and ciphertext.
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Chapter 5

Results

Using the framework we built, we investigated the performance of different bounded-

collusion functional encryption schemes and their components. First, we looked at

the Sahai-Seyalioglu (SS) scheme (discussed in Section 3.3.1). We looked at how its

performance depended on the base encryption scheme it used. We also looked at its

performance for different families of circuits and for different sized circuits.

We next looked at the Gorbunov-Vaikuntanathan-Wee (GVW) scheme (discussed

in Section 3.3.2). We first investigated how the choice of parameters for the GVW

scheme affected its security, and found what values corresponded to different security

levels. We then looked at its performance at these security levels for different bounds

on the number of collusions for which it was secure and depths of the circuits to be

evaluated. We then looked at the cost of providing adaptive simulation security.

We also compared the GVW scheme to the stateful scheme. We looked at instances

of the stateful scheme that support the same number of keys as the GVW scheme, and

also at instances with similar key and ciphertext sizes, and looked at the difference

in the number of keys supported.

We finally compared our implementations to those of Controlled Functional En-

cryption [54].

Experimental Setup In each of our experiments, we measured the sizes of the

master secret key, master public key, functional key, and ciphertext. In addition,
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Scheme Setup KeyGen Encrypt Decrypt
AES128 1.928 0.064 4.927 1.008
AES256 2.147 0.076 5.770 1.048

RSA1024 2396.458 0.648 13.401 46.043
RSA2048 15463.690 0.734 15.835 203.116
RSA4096 184937.500 0.953 30.158 1292.402

Table 5.1: Running times for the SS scheme with inner product circuits mod 8123,
for varying base encryption schemes. All times are in milliseconds.

we also measured the time that each of the Setup, KeyGen, Encrypt, and Decrypt

algorithms took. All of our experiments ran on a Lenovo Y510p computer with

an Intel Core i7-4700MQ (2.40GHz) processor, 8GB memory, and Ubuntu 14.04.

Additionally, all times reported are for the average of 10 runs.

5.1 Performance of the Sahai-Seyalioglu Scheme

We investigated the performance of the Sahai-Seyalioglu scheme in detail, both for its

own sake, and since all of our bounded-collusion functional encryption schemes use it

as a black box. We looked at the impact of using different base encryption schemes,

and the performance for each type of circuit we study, namely parity circuits, inner

product circuits modulo a prime, and Hamming distance.

We observe that this scheme is generally reasonably fast. However, the ciphertext

sizes grow large with complex circuits. The biggest bottleneck in extending this

scheme to more complicated functions is the size of the circuits being evaluated.

5.1.1 Different Base Encryption Schemes

We look at the impact of using different base encryption schemes for the SS scheme.

We compare these for inner product circuits mod 8123, a 13-bit prime, for length 10

vectors. We consider AES with 128 and 256 bit keys, and RSA with 1024, 2048, and

4096 bit keys. We consider this for the SS scheme, as all other schemes we looked

at use one-key functional encryption schemes in a black-box manner. The running

times are in Table 5.1, and the space usages are in Table 5.2.
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MSK MPK FK CT
Scheme size keys size keys size size
AES128 4,814 260 4,814 260 2,477 1,036,937
AES256 8,974 260 8,974 260 4,557 1,036,937

RSA1024 154,568 260 34,974 260 77,356 1,061,377
RSA2048 304,838 260 68,514 260 152,489 1,094,917
RSA4096 605,669 260 135,074 260 302,906 1,161,477

Table 5.2: Space usages for keys and ciphertexts for inner product circuits mod 8123
with length 10 vectors using the SS scheme, for varying base encryption schemes.
Sizes are in bytes, and keys are the number of base keys the object is composed of.

From the data in Table 5.1, we can see that RSA in general takes much longer

than AES, especially in the setup phase, where it is many orders of magnitude slower.

However, the decrypt phase is also significantly slower, especially for large RSA key

sizes. One way to continue to use RSA is to generate the keys offline, and read

them from memory when needed. We generated 80000 RSA3072 key pairs offline, in

32,275.7 seconds, or in just under 9 hours.

From Table 5.2, we also see that RSA keys are larger than their AES counterparts.

However, this difference is not as important in the ciphertext, since inner product is

a relatively complex circuit compared to, for example, hamming distance. Indeed,

as Section 5.1.5 discusses, when using AES, the ciphertexts are a negligible fraction

of the total ciphertext size. We see here that using RSA can increase this to a 10%

difference, which would be more acutely felt when computing hamming distance. For

AES we note that AES256 does not change the size of the ciphertext, only the keys.

Singleton Functional Encryption Using the Singleton FE scheme as the base

encryption scheme gives the Sahai-Seyalioglu scheme adaptive simulation security.

We now look at the impact of this increased security on performance. By design, it

will double the master secret key and master public key sizes, and add only one bit

for each key to functional keys, so we only consider the impact on ciphertexts, which

changes based on the size of the circuit, ranging from a negligible increase to doubling

the size of the ciphertext. We again consider this for the SS scheme. Table 5.3 shows

the increase in ciphertext sizes for each of the encryption schemes considered.
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Scheme Base Ciphertext Size Singleton Ciphertext Size Ratio
AES128 1,036,937 1,047,077 1.009
AES256 1,036,937 1,047,077 1.009

RSA1024 1,061,377 1,095,957 1.032
RSA2048 1,094,917 1,163,037 1.062
RSA4096 1,161,477 1,296,157 1.115

Table 5.3: Space ciphertexts for inner product circuits mod 8123 with length 10
vectors using the SS scheme, for varying base encryption schemes. Sizes are in bytes,
comparing between using the Singleton version of a scheme and the scheme itself.
Ratio is the ratio of the Singleton ciphertext to the base ciphertext

Length Setup KeyGen Encrypt Decrypt
1 0.119 0.011 0.092 0.024

10 0.280 0.015 0.319 0.066
100 1.831 0.064 2.492 0.456

1000 15.884 0.392 16.712 2.987
10000 123.819 4.172 168.315 29.911

100000 1232.034 41.245 1661.843 297.880

Table 5.4: Running times for the SS scheme for parity circuits of the given lengths,
in bits. Times are in milliseconds.

Here we see that using Singleton FE as a base encryption scheme for inner product

circuits does not increase the size of the ciphertexts significantly when using AES,

and even for RSA, the increase is not too large.

5.1.2 Parity

We first studied the SS scheme for parity circuits. This is a very simple circuit and is

useful as a lower bound on circuit complexity. The running times for different length

parity circuits are in Table 5.4, and the key and ciphertext sizes are in Table 5.5.

From these results, we see what we expect; all of the times and sizes increasing

approximately linearly with the length. This also gives us lower bounds on what we

should expect for running times and space usages for other circuits.
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MSK/MPK FK CT
Length size keys size size

1 39 2 22 177
10 372 20 193 1,352

100 3,704 200 1,907 13,822
1000 37,004 2,000 19,007 141,677

10000 370,004 20,000 190,007 1,419,683
100000 3,700,006 200,000 1,90,0011 15,268,621

Table 5.5: Key and ciphertext sizes for the SS scheme for parity circuits of the given
lengths, in bits. Sizes are in bytes.

5.1.3 Inner Product Modulo a Prime

We now investigate the SS scheme for a more useful generalization of parity circuits,

namely inner product circuits modulo a prime.

Inner Product Modulo Different Primes

First, we looked at the SS one-key functional encryption scheme for inner product

mod 𝑝, where 𝑝 was different primes of bit lengths from 8 to 31, for a vector of length

10, using AES as our base encryption scheme. The times each algorithm took for

different length primes is presented in Figure 5-1, and the space that the keys and

ciphertexts took is presented in Figure 5-2.

From these graphs, we first see that the KeyGen algorithm is significantly faster

than the others, to the extent that it appears to take no time. We also see that the

Encrypt algorithm takes the longest, and appears to be growing superlinearly, but

is still only a small factor slower than the KeyGen and Decrypt algorithms for these

lengths. We also see that the ciphertexts grow superlinearly with the length of the

prime, which matches our expectation, given the number of gates we calculated in

Table 4.3 grows quadratically with the length of the prime. These graphs also show

that the ciphertexts are multiple orders of magnitude larger than the keys.
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Figure 5-1: SS running times for different primes, with AES, inner product mod 𝑝
circuits, for length 10 vectors. The data used to generate this figure is in Table C.1.
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Figure 5-2: SS key and ciphertext sizes for different primes, with AES, inner product
mod 𝑝 circuits, for length 10 vectors. The data used to generate this figure is in Table
C.2.
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Figure 5-3: SS running times for different lengths, with AES, inner product mod 8123
circuits. The data used to generate this figure is in Table C.3.

Inner Product Modulo p, for Different Vector Lengths

We also looked at the SS one-key functional encryption scheme for different length

vectors for inner product mod 8123, using AES as our base encryption scheme. The

times each algorithm took for different lengths is presented in Figure 5-3, and the

space that the keys and ciphertexts took is presented in Figure ??.

The running time of the algorithms is in line with what we would expect. The

running time of the Decrypt algorithm is less smooth than the other ones, as the test

computer was close to running out of memory on those runs. We also see that the

ciphertexts grow linearly with the length of the input vector, to approximately 1.3

Gigabytes for a length 10000 vector, or about 130 Kilobytes per element of the vector.

This is a fairly large limiting factor on the size of vectors that can be supported by a

functional encryption scheme.
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Figure 5-4: SS key and ciphertext sizes for different primes, with AES, inner product
mod 𝑝 circuits, for length 10 vectors. The data used to generate this figure is in Table
C.2.

5.1.4 Hamming Distance

We also tested circuits for Hamming distance in the SS Scheme for different length

input vectors. We chose to look at Hamming distance because it is a simple type of

circuit, that nevertheless is still used in error correcting codes, among other things.

Additionally, it is one of the common circuits implemented to test the efficiency of a

scheme. The running times for various length inputs are in Table 5.6, and the space

usages are in Table 5.7.

Bits Setup KeyGen Encrypt Decrypt
10,000 127.448 4.081 168.927 30.422
16,000 197.898 6.518 265.079 48.095
20,000 249.972 8.323 342.458 60.525
60,000 748.012 24.875 1005.205 178.330

1,500,000 18421.860 585.208 25109.850 4476.482

Table 5.6: Running times for SS scheme for Hamming distance for different length
inputs, in milliseconds.
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MSK FK CT Circuit
Bits size keys size size Gates

10,000 370,004 20,000 190,007 2,520,831 79,953
16,000 592,004 32,000 304,007 4,245,911 127,933
20,000 740,004 40,000 380,007 5,405,371 159,948
60,000 2,220,004 120,000 1,140,007 16,787,303 479,938

1,500,000 55,500,006 3,000,000 28,500,011 422,866,997 11,999,923

Table 5.7: Key and Ciphertext Sizes for SS scheme for Hamming distance for different
length inputs in bytes.

5.1.5 Analysis of Ciphertext Components

From the above results, we can see that the ciphertexts sizes are the largest practical

barrier for the SS scheme. In comparison, the running times were more reasonable,

with the longest at approximately 25 seconds for computing Hamming distance for

1,500,000 bit vectors. Given this, it is useful to break down the parts of the ciphertext

for the SS scheme by size.

As we described in Section 4.3.2, the ciphertext in our SS implementation is

composed of a vector of input labels for the message, a vector of pairs of encrypted

labels for the circuit, and the garbled circuit. For complex circuits, the garbled circuit

can account for more than 98% of the space usage. For some circuits, we present the

sizes of the ciphertexts, and the fraction which is taken by the garbled circuit, in

Table 5.8.

These compositions suggests that, for simple circuits, because of the large number

of input labels, encrypted or otherwise, not too much can be gained in the SS scheme

by reducing the size of the circuits. Conversely, for even moderately complicated

circuits like inner product modulo a prime, reducing the size of the circuit almost

directly reduces the size of the ciphertexts.
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Circuit Ciphertext Garbled Circuit Fraction
Hamming 10 bits 1,722 0.535
Hamming 100 bits 22,529 0.644
Hamming 1000 bits 232,923 0.656
Hamming 10000 bits 2,520,831 0.682
Inner Product mod 131, length 10 404,216 0.984
Inner Product mod 131, length 100 4,878,807 0.986
Inner Product mod 131, length 1000 52,026,571 0.987
Inner Product mod 131, length 10000 533,256,823 0.987
Parity 10 bits 1,352 0.408
Parity 100 bits 13,822 0.421
Parity 1000 bits 141,677 0.435
Parity 10000 bits 1,419,683 0.436

Table 5.8: Ciphertext sizes, and the fraction of that taken by the garbled circuit, for
different circuits.

5.2 Performance of the Gorbunov-Vaikuntanathan-

Wee Scheme

We now study the performance of the GVW scheme. First, we investigated the correct

values for the parameters described in Section 3.3.2. We then studied how the GVW

scheme scales with both the depth of circuit being computed, and the level of security

offered. We then looked at the cost of guaranteeing adaptive simulation security.

We found that our implementation of GVW scheme is infeasible for most choices

of bounds on collusion, especially at an 80-bit level of security. This is primarily due

to the size of the ciphertexts. For a circuit like inner product, that can do arithmetic

over a field, most circuits will be too complex to be practical, and will generate very

large ciphertexts.

5.2.1 Security Parameters for GVW

The security of the GVW scheme depends on a few parameters, as discussed in Section

3.3.2: 𝑁 , the number of one-key FE schemes used, 𝑡, the degree of the polynomial

to represent each input, 𝑆, the number of elements added to the result of the circuit,

and 𝑣, the number of random polynomials chosen per functional key. If we let the

74



degree of the circuit we want to compute on the inputs be 𝐷, and the number of

keys under which the scheme is secure be 𝑞, Gorbunov et al. showed that with

𝑁 = Θ(𝜅𝐷2𝑞4), 𝑡 = Θ(𝜅𝑞2), 𝑣 = Θ(𝜅) and 𝑆 = Θ(𝜅𝑞2), the GVW scheme is as secure

as the one-key scheme, except with a 2−Θ(𝜅) probability [32]. While this gives us an

asymptotic understanding of security, it tells us nothing about what the constants

are in the choice of parameters. Finding these constants is necessary to instantiate

these schemes in practice. In order to do this, we wrote a set of scripts in python to

estimate probabilities of a security failure.

Small-Intersection Sets

In the GVW scheme, discussed in Section 3.3.2, a functional key is composed of

functional keys for 𝑡𝐷+1 one-key FE schemes, out of the 𝑁 total one-key FE schemes.

The security of the GVW scheme depends on the functional keys not sharing many

one-key FE functional keys. If two bounded-collusion FE functional keys allow you to

decrypt the same one-key ciphertext, then security isn’t guaranteed (and in libgarble,

completely fails). Since the inputs are hidden using a degree-𝑡 polynomial, the GVW

scheme is as secure as the one-key scheme as long as at most 𝑡 inputs are revealed.

We can rephrase this problem without referring to cryptography. Given a set of 𝑁

elements, we want to select 𝑞 subsets of size 𝑡𝐷+1, such that the number of elements

that are in more than 1 of the subsets is at most 𝑡. This is the problem that Gorbunov

et al. described as the small-intersection sets problem.

We used a python script to estimate the probability that our sets do not have

small intersection. We did this in a recursive manner, by estimating, for each 𝑞, the

probability that the number of intersections was greater than a threshold 𝑡ℎ𝑟𝑒𝑠ℎ, over

𝑞, 𝑝𝑞. Our base case was 𝑞 = 2. Here, we calculated the explicit probability, as,

𝑝2(𝑡ℎ𝑟𝑒𝑠ℎ) =
∑︁

𝑖≥𝑡ℎ𝑟𝑒𝑠ℎ

𝑖 intersections =
∑︁

𝑖≥𝑡ℎ𝑟𝑒𝑠ℎ

(︀
𝑡𝐷+1

𝑖

)︀(︀
𝑁−(𝑡𝐷+1)
𝑡𝐷+1−𝑖

)︀(︀
𝑁
𝑖

)︀ .

For our recursive estimates, we also estimated the probability that for a given set

of size 𝑡𝐷 + 1, and 𝑠 other sets of size 𝑡𝐷 + 1, the number of intersections between
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the given set and the union of the 𝑠 sets exceeds a threshold 𝑡ℎ𝑟𝑒𝑠ℎ. We did this by

partitioning 𝑡ℎ𝑟𝑒𝑠ℎ among the 𝑠 sets, and calculating the probability that pairwise,

there were at least that many intersections, using the above pairwise calculation. We

then summed over all partitions of 𝑡ℎ𝑟𝑒𝑠ℎ.

𝑠𝑞(𝑡ℎ𝑟𝑒𝑠ℎ) ≤
∑︁

∑︀𝑞−1
𝑖=0 𝑎𝑖=𝑡ℎ𝑟𝑒𝑠ℎ

∏︁
𝑖

𝑝2(𝑎𝑖).

Now, for estimating 𝑝𝑞, for 𝑞 > 2, we estimated this by picking one of our 𝑞 sets,

and,

𝑝𝑞 ≤
𝑡ℎ𝑟𝑒𝑠ℎ∑︁
𝑖=0

𝑠𝑞−1(𝑖)𝑝𝑞−1(𝑡ℎ𝑟𝑒𝑠ℎ− 𝑖).

Finally, to obtain our security parameters, we evaluated 𝑝𝑞(𝑡 + 1). In all these

calculations, we used dynamic programming to make it somewhat faster, but did not

concern ourselves with efficiency. These scripts are not practical to run for large 𝑞 or

𝑁 .

For a fixed 𝑞 and 𝐷, for each value of 𝑁 considered, we found the optimal value

of 𝑡, and then found the probability that there would be more than 𝑡 intersections.

Table 5.9 gives values of 𝑁 and 𝑡 that give at least 20, 40, and 80 bits of security, for

different values of 𝑞 and 𝐷. Appendix A contains the data for 𝑁 and 𝑡 for the pairs

of (𝑞,𝐷) studied.

Cover-Free Sets

For the GVW scheme to achieve simulation security, each key must have some 𝜁

polynomial nonzero that none of the other keys have as nonzero. Each ciphertext has

𝑣 nonzero 𝜁 polynomials out of 𝑆 total. We want to find the probability that this

condition fails to hold.

We can rephrase this problem in terms of sets. Given 𝑞 subsets 𝑠𝑖 of size 𝑣 of a

set of size 𝑆, what is the probability that for each subset 𝑠𝑖, 𝑠𝑖 ̸⊂ ∪𝑗 ̸=𝑖𝑠𝑗. These sets

are referred to as cover-free sets [23].
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20 bits security 40 bits security 80 bits security
q D N t N t N t
2 2 210 14 430 29 850 59
2 3 540 14 1,110 30 2,220 60
2 4 1,000 14 2,100 30 4,300 62
2 5 1,700 15 3,400 30 7,000 63
2 6 2,400 14 5,000 30 10,400 64
3 2 750 13 1,650 29 3,400 62
3 3 1,700 12 3,800 29 8,000 62
3 4 3,200 12 6,800 28 14,400 62
4 2 1,700 13 3,600 29 7,400 63
4 3 3,900 13 8,100 29 16,800 62
5 2 3,000 12 6,200 28 12,800 63
6 2 4,500 11 9,900 28 19,800 62
7 2 6,400 11 14,000 27 28,800 62

Table 5.9: Values of 𝑁 and 𝑡 that achieve 20, 40, and 80 bits of security for small
values of 𝑞 and 𝐷.

We used a python script to estimate for given values of 𝑞, 𝑆, and 𝑣, the probability

that the ∆, as defined in Section 3.3.2, for a functional key is covered by the ∆s for

𝑞 − 1 other functional keys.

We started with a target set to be covered, of size 𝑎, one set to cover it, of size

𝑣, and threshold 𝑡ℎ𝑟𝑒𝑠ℎ of the elements of the target that are covered, 𝑝1(𝑡ℎ𝑟𝑒𝑠ℎ).

(When there are two sets, distinguishing the target and covering sets strictly leads to

overestimates, but it is more useful for more than two sets.) The probability of this

occurring we calculated as,

𝑝1(𝑡ℎ𝑟𝑒𝑠ℎ, 𝑎) =
𝑎∑︁

𝑖=𝑡ℎ𝑟𝑒𝑠ℎ

(︀
𝑎

𝑡ℎ𝑟𝑒𝑠ℎ

)︀(︀
𝑆−𝑎

𝑣−𝑡ℎ𝑟𝑒𝑠ℎ

)︀(︀
𝑆
𝑣

)︀ .

Now, for more than one set covering the target, we estimated this probability

recursively by partitioning the threshold.

𝑝𝑞(𝑡ℎ𝑟𝑒𝑠ℎ, 𝑎) ≤
𝑡ℎ𝑟𝑒𝑠ℎ∑︁
𝑖=0

𝑝1(𝑖, 𝑎)𝑝𝑞−1(𝑡ℎ𝑟𝑒𝑠ℎ− 𝑖, 𝑎− 𝑖)

Then, we evaluated our estimate for each possible target, 𝑞(𝑝𝑞−1(𝑣, 𝑣)).

We then, for a given 𝑞 and 𝑆, found the best value of 𝑣 by finding the first local
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20 bits security 40 bits security 80 bits security
q S v S v S v
2 24 12 45 22 86 43
3 63 16 117 30 228 59
4 100 18 185 34 360 67
5 134 18 253 36 480 69
6 180 20 320 37 620 73
7 220 20 390 38 740 73

Table 5.10: Values of 𝑆 and 𝑣 that achieve 20, 40, and 80 bits of security for small
values of 𝑞 and 𝐷.

minimum of the probability that the sets are not cover-free. Table 5.10 shows, for

different values of 𝑞, the values of 𝑆 and 𝑣 that are required to give 20, 40, and 80

bits of security. Appendix B contains the data for 𝑆 and 𝑣 for the values of 𝑞 studied.

5.2.2 Inner Product Circuits

We investigated the performance of the GVW scheme for different parameters and

options. First, we used the parameters derived in Section 5.2.1 to evaluate the per-

formance of the GVW scheme without ∆ and the 𝜁 polynomials at the 20, 40, and

80 bit security levels, for different number of keys supported, and different maximum

depth of the circuits, for inner product circuits modulo 8123, with length one vectors,

using AES128 as the base encryption scheme. The timing results are in Table 5.11,

and the space results are in Table 5.12. We also give the timings and space usage for

the SS one-key scheme as a comparison.

We do not give data for larger values of 𝑞 and 𝐷 for two reasons. First, using

larger 𝑞 or 𝐷, or higher security levels, requires increasing the prime from 8123 to

a larger number. Second, increasing it also increases the amount of memory that is

required, and the test computer could not handle larger numbers without significant

performance degradation.

From these tables we see that using the GVW scheme instead of the SS scheme

induces a large multiplicative slowdown. This means that the ciphertext for multi-

plying two numbers modulo 8123 is 21 Megabytes, to make the scheme 2-collusion

secure, at the lowest security level. While that might be small enough to compute
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q D Bits N t Setup KeyGen Encrypt Decrypt
2 2 20 210 14 37.625 0.690 89.560 4.777
2 2 40 430 29 73.778 1.378 181.696 9.737
2 2 80 850 59 156.066 2.999 393.102 20.627
2 3 20 540 14 93.664 1.593 234.796 9.720
2 3 40 1,110 30 188.416 3.454 473.119 19.941
2 3 80 2,220 60 382.954 7.222 1008.510 41.646
2 4 20 1,000 14 171.853 3.004 441.235 16.385
2 4 40 2,100 30 362.385 6.376 918.213 35.061
2 4 80 4,300 62 753.583 15.785 1987.400 74.010
2 5 20 1,700 15 287.266 5.156 733.898 25.442
2 5 40 3,400 30 569.548 11.380 1459.884 51.147
2 5 80 7,000 63 1168.522 24.119 2903.822 110.291
2 6 20 2,400 14 403.647 6.879 1020.871 33.973
2 6 40 5,000 30 835.307 16.765 2126.857 72.164
3 2 20 750 13 132.157 2.197 333.237 10.902
3 2 40 1,650 29 279.208 5.041 716.128 23.256
3 2 80 3,400 62 576.197 11.049 1465.432 48.541
3 3 20 1,700 12 285.230 4.816 721.994 21.824
3 3 40 3,800 29 638.692 12.321 1632.224 50.258
3 3 80 8,000 62 1331.735 26.141 3363.164 107.375
4 2 20 1,700 13 285.838 4.724 730.118 20.817
4 2 40 3,600 29 601.807 11.483 1544.990 45.138
4 2 80 7,400 63 1232.802 23.977 3103.926 95.758
4 3 20 3,900 13 649.961 12.102 1652.625 46.935
4 3 40 8,100 29 1344.793 25.802 3363.368 101.239
5 2 20 3,000 12 583.392 9.400 1302.697 36.615
5 2 40 6,200 28 1043.119 20.320 2607.043 76.374
6 2 20 4,500 11 756.816 13.778 1916.436 52.836
7 2 20 6,400 11 1066.648 19.921 2690.259 74.077
SS scheme 0.304 0.015 0.603 0.141

Table 5.11: GVW with SS with AES128 running times for different values of 𝑞 and
𝐷 with 20, 40, and 80 bits of security, with the base SS scheme as a reference. The
column Bits is the number of bits of security offered. This was for an inner product
mod 8123 circuit, with 1 element, or equivalently, multiplication mod 8123. This is
for circuits not using ∆ and 𝜁 polynomials. All times are in milliseconds.
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MSK/MPK FK CT
q D Bits N t size keys size size
2 2 20 210 14 101,434 5,460 7,301 21,153,724
2 2 40 430 29 207,694 11,180 14,876 43,314,764
2 2 80 850 59 410,554 22,100 30,065 85,622,204
2 3 20 540 14 260,824 14,040 10,854 54,395,284
2 3 40 1,110 30 536,134 28,860 23,003 111,812,524
2 3 80 2,220 60 1,072,264 57,720 45,768 223,625,044
2 4 20 1,000 14 483,004 26,000 14,407 100,732,004
2 4 40 2,100 30 1,014,304 54,600 30,596 211,537,204
2 4 80 4,300 62 2,076,904 111,800 62,985 433,147,604
2 5 20 1,700 15 821,104 44,200 19,220 171,244,404
2 5 40 3,400 30 1,642,204 88,400 38,200 342,488,804
2 5 80 7,000 63 3,381,004 182,000 79,931 705,124,004
2 6 20 2,400 14 1,159,204 62,400 21,495 241,756,804
2 6 40 5,000 30 2,415,004 130,000 45,791 503,660,004
3 2 20 750 13 362,254 19,500 6,823 75,549,004
3 2 40 1,650 29 796,954 42,900 14,921 166,207,804
3 2 80 3,400 62 1,642,204 88,400 31,622 342,488,804
3 3 20 1,700 12 821,104 44,200 9,361 171,244,404
3 3 40 3,800 29 1,835,404 98,800 22,264 382,781,604
3 3 80 8,000 62 3,864,004 208,000 47,310 805,856,004
4 2 20 1,700 13 821,104 44,200 6,832 171,244,404
4 2 40 3,600 29 1,738,804 93,600 14,927 362,635,204
4 2 80 7,400 63 3,574,204 192,400 32,132 745,416,804
4 3 20 3,900 13 1,883,704 101,400 10,125 392,854,804
4 3 40 8,100 29 3,912,304 210,600 22,266 815,929,204
5 2 20 3,000 12 1,449,004 78,000 6,331 302,196,004
5 2 40 6,200 28 2,994,604 161,200 14,424 624,538,404
6 2 20 4,500 11 2,173,504 117,000 5,825 453,294,004
7 2 20 6,400 11 3,091,204 166,400 5,825 644,684,804
SS scheme 483 26 250 100,732

Table 5.12: GVW with SS with AES128 running times for different values of 𝑞 and
𝐷 with 20, 40, and 80 bits of security, with the base SS scheme as a reference. The
column Bits is the number of bits of security offered. This was for an inner product
mod 8123 circuit, with 1 element, or equivalently, multiplication mod 8123. This is
for circuits not using ∆ and 𝜁 polynomials. All sizes are in bytes

80



Length 1 Length 10
Keys 20 bits 40 bits 80 bits 20 bits 40 bits 80 bits

2 2.130 3.085 4.873 1.117 1.210 1.408
3 3.904 6.361 11.222 1.295 1.598 2.193
4 5.587 9.454 18.248 1.503 1.979 2.923
5 7.134 12.547 25.079 1.693 2.360 3.587
6 9.226 16.229 33.049 1.951 2.736 4.361
7 11.046 20.268 39.881 2.175 3.128 5.025

Table 5.13: Ratios between ciphertext sizes for using Singleton FE and ∆ and 𝜁
polynomials for the given number of bits of security for inner product modulo 8123
circuits of short lengths, for the given number of keys for which the scheme is secure.

inner products for some short vectors, most of the values of 𝑞 and 𝐷 we studied were

not able to give us much. This blowup, combined with the previously discussed large

ciphertexts for the SS scheme, means that the GVW scheme is impractical in most

cases.

5.2.3 Space Cost of Simulation Security

The GVW scheme ensures adaptive simulation security via using the SS scheme with

the singleton FE as a base encryption scheme, and using ∆ and the 𝜁 polynomials.

We now investigate how expensive this is for various parameters. Table 5.13 and

Table 5.14 give the ratios between the sizes of the ciphertexts with 20, 40, or 80 bits

of security as compared to ciphertexts which use neither the singleton scheme nor ∆

and 𝜁s, for inner product circuits modulo 8123 of lengths 1 and 10 for the first table,

and 100 and 1000 for the second table, for different bounds on the number of keys

for which it is secure.

Since using ∆ and the 𝜁 polynomials is just an additive factor, and as we saw in

Section 5.1.1, the singleton scheme does not increase the ciphertext size that much for

inner products, achieving adaptive simulation security is cheap for even moderately

long inner products.
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Length 100 Length 1000
Keys 20 bits 40 bits 80 bits 20 bits 40 bits 80 bits

2 1.019 1.028 1.038 1.001 1.002 1.004
3 1.036 1.060 1.101 1.003 1.005 1.010
4 1.053 1.091 1.160 1.004 1.008 1.016
5 1.068 1.121 1.213 1.006 1.011 1.021
6 1.089 1.152 1.275 1.008 1.014 1.027
7 1.107 1.183 1.328 1.010 1.017 1.032

Table 5.14: Ratios between ciphertext sizes for using Singleton FE and ∆ and 𝜁
polynomials for the given number of bits of security for inner product modulo 8123
circuits of long lengths, for the given number of keys for which the scheme is secure.

5.3 Stateful Functional Encryption

We now look at the performance of the stateful functional encryption scheme. As we

discussed in Section 3.3.2, it is a scheme which can issue a bounded number of keys,

but requires keeping state. We compare it to the GVW scheme to show the cost of

avoiding having to keep state.

5.3.1 Inner Product Modulo a Prime

The Stateful FE scheme grows linearly with 𝑞, the limit on the number of keys it

can to support. We compare the performance of equivalently sized stateful schemes,

with 210, 430, and 850 keys, to the 20, 40, and 80 bit levels of security for the 𝑞 = 2,

𝐷 = 2 case. Table 5.15 shows the differences in running times, and Table 5.16 shows

the space usage differences. We also include the stateful scheme with 𝑞 = 2, to see

the multiplicative increase in time and space usage between the schemes when only

two keys are going to be given out.

For similar sized instances, the only difference in space usage is that the GVW

scheme has larger functional keys due to the added complexity of the scheme. We

also note that the stateful scheme is about as fast, except for Decryption, where

it is twice as fast, while being able to support more keys. The Stateful scheme is

significantly more practical than the GVW scheme for applications where keeping

state is reasonable.
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Scheme Setup KeyGen Encrypt Decrypt
Stateful, q=2 5.146 0.133 10.501 1.279

GVW, q=2, 20 bits 354.759 6.162 935.168 44.292
Stateful, q=210 352.841 4.780 981.477 21.626

GVW, q=2, 40 bits 727.505 12.651 2004.401 91.484
Stateful, q=430 724.993 9.604 1992.352 45.316

GVW, q=2, 80 bits 1435.318 26.464 3898.106 570.842
Stateful, q=850 1411.076 19.857 3644.260 159.140

Table 5.15: Running times for the GVW scheme and Stateful Scheme for similar
space usage, for length 10 inner products modulo 8123 in milliseconds.

MSK/MPK FK CT
Scheme size keys size size

Stateful, q=2 9,630 520 2,479 2,073,876
GVW, q=2, 20 bits 1,010,944 54,600 71,882 217,756,774

Stateful, q=210 1,010,944 54,600 2479 217,756,774
GVW, q=2, 40 bits 2,070,024 111,800 146,281 445,882,914

Stateful, q=430 2,070,024 111,800 2479 445,882,914
GVW, q=2, 80 bits 4,091,904 221,000 295,078 881,396,454

Stateful, q=850 4,091,904 221,000 2479 881,396,454

Table 5.16: Space usage for the GVW scheme and Stateful Scheme for similar space
usage in bytes.
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Encrypt Decrypt Ciphertext Size
Bits SS CFE SS CFE SS CFE

10,000 0.168 (3.81,0.30) 0.030 (2.19,0.31) 2520.8KB 919.0KB
16,000 0.265 (3.95,0.47) 0.048 (2.70,0.45) 4245.9KB 1470.6KB
20,000 0.342 (6.19,0.55) 0.060 (4.70,0.52) 5405.3KB 1838.4KB
60,000 1.005 (11.15,1.52) 0.178 (88.34,0.44) 16787.3KB 5515.9KB

1,500,000 25.109 (469.78,45.81) 4.476 (426.50,44.26) 422.0MB 135.0MB

Table 5.17: Comparison between our SS scheme implementation and Controlled Func-
tional Encryption, for Hamming distance. Times for Controlled Functional Encryp-
tion are (offline, online). All times are in seconds.

5.4 Comparisons to Controlled Functional Encryp-

tion

We also compare our work to controlled functional encryption [54]. This allows us to

both make an apples to apples comparison to ensure that our work is comparable in

some cases, and measure the performance trade-off of the extra interaction used by

controlled functional encryption.

We compare the SS scheme against Controlled Functional Encryption for Ham-

ming distance. As we can see from Table 5.17, our implementation is about twice

as fast as their online phase for encryption, and about ten times as fast for decryp-

tion. However, our encryption algorithm also generates the garbled circuit, which

both their encrypt and decrypt perform offline. Part of the reason for the speedup is

probably due to using libgarble, which both takes advantage of more features, and is

written in C++ as opposed to Java [36].

Our implementation has ciphertexts about three times as large. Part of this is

caused by the fact that we include the circuit description for the circuit being garbled

in the ciphertext, instead of regenerating it in the Decrypt algorithm, or doing it

offline and storing it. Additionally, as the SS scheme is for functional encryption, our

implementation also includes encrypted labels for the circuit description.

Also, we note that both the stateful and GVW schemes use a one-key functional

encryption scheme as a black box, they each run multiplicatively slower, and take

multiplicatively more space, compared to the SS scheme. Given this, we do not
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explicitly compare them.
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Chapter 6

Future Work

While FIFE is a good start at investigating functional encryption, there are many

ways in which it can be improved. We summarize some of these directions below.

6.1 Additional Functional Encryption Schemes

One direction in which to continue this work would be to add more functional en-

cryption schemes. This would lead to both understanding the practical implications

of more functional encryption schemes, and understand the performance trade-offs

between the different schemes.

6.1.1 GKPVZ Scheme

One such scheme is the GKPVZ scheme, discussed in Section 3.3.1. This is another

one-key functional encryption scheme. It uses techniques from lattice cryptography to

output ciphertexts that do not grow with the size of the circuit being computed. How-

ever, it also relies on fully homomorphic encryption and attribute-based encryption

to do so.

There have been a few implementations of fully homomorphic encryption. Gentry

and Halevi implemented it in 2010, with large keys, and bootstrapping operations

that took minutes [28]. Halevi and Shoup made HElib in 2014 as a more efficient
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implementation of fully homomorphic encryption [37]. However, these implementa-

tions of fully homomorphic encryption are still far from practical. In this case, there

is a clear trade-off between asymptotic performance and practicality, and it deserves

further study.

6.1.2 Functional Encryption Based on Function-Hiding Inner

Product Encryption

We also want to compare the performance of the one-key scheme proposed by Kim et

al. [44]. This is another one-key functional encryption scheme, but this one is based

on function-hiding inner product encryption, so it would be interesting to see what

are the advantages and disadvantages of the different type of construction. Also, as

their scheme is a two input functional encryption scheme, it will be interesting to see

what the cost is of this variant of functional encryption.

6.1.3 Agrawal-Rosen Scheme

Another scheme to consider is the Agrawal-Rosen scheme, which we discussed in 3.3.2.

This is a bounded-collusion scheme, which additionally is able to improve the speed of

the Encrypt algorithm by moving much of the computation to an offline setup. This

scheme also achieves better asymptotic growth compared to the GVW scheme as the

number of functional keys under which it is secure increases. It would be interesting

to investigate both how the size of its keys and ciphertexts, and the running times of

its algorithms, grow in practice, but also how much of an effect moving computation

offline is, and the practical gains realizable by that difference.

6.2 Other Traditional Encryption Schemes

While we investigated RSA and AES, there are other choices of public-key and secret-

key schemes that can be used. Especially since we determined in Section 5.1.1 that

RSA was significantly slower than AES, it would be especially useful to investigate
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other, potentially faster, public-key schemes, such as Elliptic Curve Cryptography

[46, 52], or ElGamal [22] which each have their own advantages. Another possibility

is to use a lattice-based public-key encryption scheme such as Regev’s cryptosystem

[57]. At the expense of efficiency, this has the advantage that there is no known

quantum attack on it, unlike the previous schemes [68].

6.3 Optimizations

6.3.1 Garbled Arithmetic Circuits

The GVW scheme discussed in Section 3.3.2 encodes polynomials over finite fields.

When combined with the SS one-key scheme, this means doing field operations with a

binary circuit. While this is possible, it requires large circuits to compute, as discussed

in Section 5.1.5. It would be more convenient if we could operate directly on the field

elements. The garbled arithmetic circuits of Applebaum, Ishai, and Kushilevitz could

allow us to do this [5]. However, we were not able to figure out how to use their scheme

without leaking information.

6.3.2 Supporting More Circuits

We only included implementations for a few circuits, as shown in table 4.1. Supporting

more circuits would give a better idea of what functions are practical in the existing

schemes.

A more general approach would be to use general universal circuits, as we discussed

in Section 3.2.4. This would allow us to create functional encryption schemes that

support all functions.

6.3.3 Reducing Circuit Size

As we discussed in Section 5.1.5, a large part of the ciphertext’s size came from the

size of the circuit. Reducing the size of the circuits would improve the performance

of the scheme.
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One specific way to improve the performance would be to use a more efficient

multiplication circuit. Currently, as discussed in Section 4.2, we are using a multipli-

cation circuit that uses a quadratic number of gates in the input lengths, and more

efficient multiplication algorithms exist [41, 63].

6.3.4 Implicit Circuit Descriptions

As currently implemented, each ciphertext currently includes a description of the uni-

versal circuit that is garbled. The ciphertext size could be somewhat reduced by not

storing this information, and instead just having it publicly available. Additionally,

for the GVW scheme, even if not totally removed from the ciphertext, we could store

it just once for the entire GVW scheme ciphertext, instead of once per instance of

the SS ciphertext it contains.

6.3.5 Parallelism

Currently, FIFE runs in a single-threaded manner. Using parallelism could speed

up some algorithms and schemes significantly. When running the setup for the SS

scheme, we generate a lot of key pairs for the base encryption scheme, which could

easily be done in parallel.

For the GVW scheme, all of the algorithms can benefit from parallelism. The

Setup algorithm runs the Setup algorithm for many copies of a one-key functional

encryption scheme. The KeyGen algorithm again runs the one-key functional en-

cryption KeyGen algorithm many times. The Encrypt algorithm runs many copies

of the one-key Encrypt algorithm. The Decrypt algorithm runs many copies of the

one-key Decrypt algorithm, and then just does polynomial interpolation. All of these

likely can achieve higher speeds via parallelism.

6.3.6 Streaming Garbled Circuits

As discussed in Section 5.1.5, constructing the garbled circuits we are using often

takes significantly more memory than when written to file. Also, as we saw in Sections
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5.1 and 5.2, the ciphertexts written to file can already be quite large. As libgarble

requires holding the circuit in memory to do operations, this scheme cannot support

significantly larger circuits or higher values of 𝑞, the limit on collusion. One way to

get around this is to use a streaming garbled circuit, which only needs to load part

of the circuit into memory at a given time. Adding this feature to libgarble would

increase the bound on what could be supported.
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Chapter 7

Conclusion

We built a Framework for Investigating Functional Encryption, and investigated the

performance of various functional encryption schemes. We implemented some of the

existing functional encryption schemes, and evaluated their performance in detail, for

a few classes of interesting circuits, and showed the practical limits for each of them.

We found that for the Sahai-Seyalioglu scheme, secret-key functional encryption

is significantly faster than functional encryption with public keys, especially in the

Setup phase. However, for even moderately complex circuit families, the extra space

used by public-key encryption is not significant. If the Setup phase is done in an

offline fashion, and the needed public-key encryption key pairs are just loaded, then

using public-key encryption is a reasonable approach.

We found that the biggest constraining factor for the GVW scheme using the SS

scheme, and to a lesser extent for the SS scheme itself, was the size of the ciphertexts.

In the GVW scheme, in order to get sufficient security for relatively small values of 𝑞,

the base one-key scheme needs to be repeated hundreds or thousands of times. This

means that it is not practical even for just multiplying two number modulo 8123 if

you want to be secure against a 7-key collusion. For the SS scheme, we were able

to do better, and take the inner product of vectors of length 10000 modulo 8123, or

inner product modulo a prime with 31 bits for a shorter vector, but the ciphertexts for

these also grow large. In comparison, the running times were often more manageable.

While our work does not offer the most compelling running times and key and
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circuit sizes for functional encryption, it provides a first implementation of functional

encryption schemes, and highlights some of the performance bottlenecks in various

implementations. Additionally, for the GVW scheme in particular, it provides a

limited analysis of the concrete relationship between parameters for the scheme and

security, for some small instances of the scheme.

Our work also creates an extendible framework to examine the performance of

additional functional encryption schemes and compare them to other schemes. It

also allows different components to be added, and their impact on the functional

encryption schemes to be easily evaluated.

FIFE is a first step in the work to make functional encryption usable in practice.

There are many places where functional encryption could offer a better security rela-

tionship for data. Just as public-key encryption is now heavily utilized and integral

to the tech industry, functional encryption could create or enable new ways of shar-

ing, storing, and using data for many people. However, more work is needed to keep

moving in that direction.
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Appendix A

Small-Intersection Sets Data

In Section 5.2.1, we discussed how we estimated the bits of security given for values

of 𝑞, 𝐷, 𝑁 , and 𝑡. The data we generated is below.
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N t Bits of Security
10 1 0.157100961085
30 1 2.44746449903
50 3 4.53449517872
70 4 6.53804152127
90 6 8.5474765021

110 7 10.533037078
130 9 12.4964461256
150 10 14.4696247209
170 11 16.4166854921
190 13 18.3700843058
210 14 20.314047658
230 16 22.2462602285
250 17 24.1878758877
270 18 26.1152685884
290 20 28.0448449247
310 21 29.9721458588
330 23 31.8891417167
350 24 33.8163609647
370 25 35.7339445069
390 27 37.6507129557
410 28 39.56904706
430 29 41.4795956509
450 31 43.3961326831
470 32 45.3078523632
490 34 47.2166551851
510 35 49.129388495
530 36 51.0359908338
570 39 54.8531464031
610 42 58.6654260709
650 45 62.4735299409
690 47 66.2791522412
730 50 70.0859650426
770 53 73.8894038584
810 56 77.6898712326
850 59 81.4877027294
890 61 85.287005466

Table A.1: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 2,
𝐷 = 2.
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N t Bits of Security
150 4 6.01165833582
180 4 7.15412830618
210 5 8.30749793806
240 6 9.44245835527
270 7 10.5637950687
300 8 11.6746390236
330 9 12.7771509386
360 9 13.8773248275
420 11 16.0832178391
480 13 18.264595022
540 14 20.4349727801
600 16 22.6070573889
660 18 24.7645723918
720 19 26.9188055
780 21 29.0724808374
840 23 31.2161262486
900 24 33.3606639928
960 26 35.5027582634

1020 28 37.6373344144
1080 29 39.7754023077
1110 30 40.8432720155
1140 31 41.9095385051
1170 32 42.9743194338
1200 33 44.0377205638
1260 34 46.1711631952
1320 36 48.2994939391
1440 39 52.5528964928
1560 42 56.7994170959
1680 46 61.0442646103
1800 49 65.2862154631
1860 51 67.403831879
1920 52 69.5232663359
1980 54 71.6416352399
2040 56 73.7569338608
2100 57 75.8751865212
2160 59 77.9912876822
2220 60 80.1050296239
2280 62 82.2218992842

Table A.2: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 2,
𝐷 = 3.
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N t Bits of Security
400 5 8.61902890009
500 7 10.5834665939
600 8 12.5083560961
700 10 14.4257535703
800 11 16.3253918744
900 13 18.2166325069

1000 14 20.1011792659
1100 16 21.9757494549
1200 17 23.85024976
1300 19 25.7132622768
1400 20 27.5805903519
1500 22 29.4351166597
1600 23 31.29706631
1700 24 33.1471375984
1800 26 35.0028625287
1900 27 36.8502124872
2000 29 38.7001782855
2100 30 40.5453262442
2200 32 42.3905962689
2400 35 46.0752935505
2600 38 49.7551693757
2800 41 53.4309262737
3000 43 57.1037841565
3200 46 60.7744197057
3400 49 64.4421364579
3600 52 68.1072736782
3800 55 71.7701146916
3900 57 73.5997546318
4000 58 75.4308985471
4100 60 77.259016811
4200 61 79.0898287908
4300 62 80.9167406441
4400 64 82.7470801685

Table A.3: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 2,
𝐷 = 4.
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N t Bits of Security
200 1 3.11679390793
400 3 5.73514591332
600 5 8.20038492117
800 7 10.5962211332

1000 9 12.952191145
1200 10 15.2872713692
1400 12 17.6118084529
1600 14 19.9195030578
1700 15 21.0684166734
1800 16 22.2145746357
2000 18 24.499828614
2200 20 26.777226024
2400 21 29.0546272491
2600 23 31.3271179179
2800 25 33.5940309046
3000 27 35.8562301107
3200 29 38.1143934984
3400 30 40.3708759784
3600 32 42.6277807516
3800 34 44.8814003511
4000 36 47.1321299867
4200 38 49.38029816
4400 40 51.6261807847
4600 41 53.8735972644
4800 43 56.1194700794
5000 45 58.3633314301
5200 47 60.6053714672
5400 49 62.8457549613
5600 50 65.0859494058
5800 52 67.3267485786
6000 54 69.5660354907
6200 56 71.8039329297
6400 58 74.0405496057
6600 60 76.2759821934
6800 61 78.5129480171
7000 63 80.7489692567
7200 65 82.9838788216

Table A.4: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 2,
𝐷 = 5.
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N t Bits of Security
400 2 4.20240492792
800 4 7.58478717517

1200 7 10.8493674187
1600 9 14.0168709016
2000 12 17.1603535722
2400 14 20.2658020801
2800 17 23.360816801
3200 19 26.4364635901
3600 22 29.505269257
4000 24 32.5633726556
4400 27 35.6157389315
4800 29 38.662275633
5200 32 41.7033624124
5600 34 44.7416967055
6000 37 47.7745621833
6400 39 50.8067758506
6800 42 53.83338216
7200 44 56.8608532206
7600 47 59.8825345721
8000 49 62.9062225215
8400 52 65.9239274211
8800 54 68.9445272011
9200 56 71.9597196734
9600 59 74.9769852108

10000 61 77.9901427119
10400 64 81.0045243181
10500 64 81.7559709448

Table A.5: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 2,
𝐷 = 6.
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N t Bits of Security
200 2 7.5153259993
300 4 9.91739897296
400 6 12.2781967561
500 8 14.6193471168
600 10 16.947021665
650 11 18.1067840282
700 12 19.2642006412
750 13 20.419498693
800 13 21.5775248772
900 15 23.8880805298

1000 17 26.1907275923
1100 19 28.4870063365
1200 21 30.7780396666
1300 23 33.0646727582
1400 25 35.3475580572
1450 25 36.4892031771
1500 26 37.6312774476
1550 27 38.772455828
1600 28 39.9128024503
1650 29 41.0523746537
1700 30 42.1912239183
1750 31 43.3293966437
1800 32 44.466934803
1900 34 46.740256409
2000 36 49.01145498
2200 39 53.5516785401
2400 43 58.0884764872
2600 47 62.6190720309
2800 50 67.1446924684
3000 54 71.6708500376
3200 58 76.1925722705
3400 62 80.7104891166
3500 63 82.9685508755

Table A.6: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 3,
𝐷 = 2.
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N t Bits of Security
500 3 8.40604528504
600 3 9.40939899867
700 4 10.3994780355
800 5 11.3797752594
900 6 12.3542778286

1000 6 13.334718623
1100 7 14.3273797914
1200 8 15.3122364582
1300 9 16.2912622865
1400 10 17.2657379557
1500 10 18.2457191105
1600 11 19.2294482591
1700 12 20.2081493266
1800 13 21.182685985
2000 14 23.129928963
2200 16 25.0809030946
2400 18 27.0192207305
2600 19 28.9646160146
2800 21 30.9018859982
3000 22 32.8369875157
3200 24 34.7732147498
3400 26 36.7013550683
3600 27 38.6356023732
3700 28 39.6003803185
3800 29 40.563467189
4000 30 42.490764008
4400 34 46.3401490561
4800 37 50.1892310241
5200 40 54.0333145109
5600 43 57.8731466848
6000 46 61.709318125
6400 49 65.5423038462
6800 53 69.3754829837
7200 56 73.2062735483
7600 59 77.0345366185
7800 61 78.9470966329
8000 62 80.8605462131
8200 64 82.7735187576
8400 65 84.6845341512

Table A.7: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 3,
𝐷 = 3.
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N t Bits of Security
800 2 8.18643603908

1200 4 10.2700068194
1600 5 12.4037170797
2000 7 14.5628579368
2400 9 16.7122704729
2800 11 18.8545368871
3000 12 19.9233744957
3200 12 20.9936332165
3400 13 22.067673162
3600 14 23.1394462448
4000 16 25.2772495399
4400 18 27.408719052
4800 20 29.5350344481
5200 21 31.6662894776
5600 23 33.7930877959
6000 25 35.9154575061
6400 27 38.0340894131
6600 27 39.0932539279
6800 28 40.1543016198
7200 30 42.2736430709
7600 32 44.3897380623
8000 34 46.5030096425
8400 35 48.6157746459
8800 37 50.7299173048
9200 39 52.8415470052
9600 41 54.9509437967

10000 42 57.0583756604
10400 44 59.1687142351
10800 46 61.2770250377
11200 48 63.3835055016
11600 50 65.4883260161
12000 51 67.5943773261
12400 53 69.700130084
12800 55 71.8043408444
13200 57 73.9071379099
13600 58 76.0098238291
14000 60 78.1135467912
14400 62 80.2159427095
14800 64 82.3171114322

Table A.8: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 3,
𝐷 = 4.
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N t Bits of Security
500 3 8.21232353446
600 3 9.23701258522
700 4 10.3081418689
800 5 11.3600740912
900 6 12.4031144514

1000 7 13.4424939867
1100 8 14.4809007183
1200 8 15.5362844901
1300 9 16.5903396598
1400 10 17.6423215351
1500 11 18.6932383072
1600 12 19.7436773259
1700 13 20.7939712248
1800 14 21.8442976088
2000 15 23.9608434367
2200 17 26.0742015413
2400 19 28.185229633
2600 21 30.2944457787
2800 22 32.411649416
3000 24 34.5262719211
3200 26 36.6382475884
3400 28 38.7479147445
3500 28 39.8039369428
3600 29 40.8611893392
3700 30 41.9177398668
3800 31 42.9736337356
4000 33 45.0836102422
4400 36 49.3003568171
4800 40 53.5174623183
5200 43 57.7282228803
5600 47 61.9404643729
6000 51 66.1461265599
6400 54 70.3542274425
6800 58 74.5566872084
7200 61 78.7603069222
7400 63 80.860765038
7600 65 82.9600816124
8000 68 87.1599883708

Table A.9: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 4,
𝐷 = 2.
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N t Bits of Security
600 1 6.41685418585

1200 3 9.02389722148
1800 5 11.7009548643
2400 7 14.3959346874
3000 9 17.1036912004
3600 11 19.8206943237
3900 13 21.1834004661
4200 14 22.5551130754
4800 16 25.2981423084
5400 18 28.0402563263
6000 21 30.7836046459
6600 23 33.5353669904
7200 25 36.2833632925
7800 27 39.0279852534
8100 29 40.4040127474
8400 30 41.7791721711
9000 32 44.5265154355
9600 34 47.2702899199

10200 37 50.0173615204
10800 39 52.7623219984
11400 41 55.5040238625
12000 44 58.2472388036
12600 46 60.9896157035
13200 48 63.7291246887
13800 51 66.4690633859
14400 53 69.2090848095
15000 55 71.9465938382
15600 58 74.6838209371
16200 60 77.4217950512
16800 62 80.157555347
17400 65 82.8925381463

Table A.10: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 4,
𝐷 = 3.
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N t Bits of Security
400 1 5.40021393707
800 2 7.81847117837

1200 4 10.2139854764
1600 6 12.5610510099
2000 8 14.9043999343
2400 9 17.2722131525
2800 11 19.6457165575
3000 12 20.8351560604
3200 13 22.0267993357
3600 15 24.4169934206
4000 17 26.8161271625
4400 19 29.2233675591
4800 21 31.6376754755
5200 23 34.0580065542
5600 25 36.4833961295
6000 27 38.9129898007
6200 28 40.129127851
6400 29 41.3460485363
6800 31 43.7819422676
7200 34 46.2207806106
7600 36 48.6627351203
8000 38 51.1060032163
8400 40 53.5502903319
8800 42 55.9953541947
9200 44 58.4409959324
9600 46 60.8870526563

10000 48 63.3333912904
10400 50 65.7799034423
10800 52 68.2265011454
11200 54 70.6731133223
11600 56 73.1196828518
12000 58 75.5661641333
12400 61 78.0131439012
12800 63 80.4605030475
13200 65 82.9076151378

Table A.11: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 5,
𝐷 = 2.
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N t Bits of Security
600 1 5.36777630403

1200 2 7.75200002816
1800 4 10.0617401033
2400 5 12.3217856783
3000 7 14.6059797259
3600 9 16.8681434856
3900 10 17.9979878169
4200 10 19.129001605
4500 11 20.2729365559
4800 12 21.41650563
5400 14 23.7060696082
6000 16 26.0022240816
6600 18 28.3069207429
7200 20 30.6207809884
7800 22 32.9437302106
8400 24 35.2753358964
9000 26 37.6149936052
9300 27 38.7876327091
9600 28 39.9620309995
9900 29 41.1381033426

10200 30 42.3157661212
10800 32 44.6755394505
11400 34 47.0407306841
12000 36 49.4107665341
12600 38 51.7851232578
13200 40 54.1633261419
13800 42 56.5449472849
14400 44 58.9296024969
15000 46 61.3169478129
15600 48 63.7066759171
16200 50 66.0985126541
16800 52 68.4922137242
17400 54 70.8875616122
18000 56 73.2843627705
18600 58 75.6824450586
19200 60 78.0816554301
19800 62 80.4818578531
20400 64 82.8829314466

Table A.12: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 6,
𝐷 = 2.
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N t Bits of Security
800 1 5.20896592233

1600 2 7.50385403636
2400 4 9.62480453888
3200 5 11.791520608
4000 6 13.8853324357
4800 8 16.0077908715
5600 9 18.096381049
6000 10 19.1596608004
6400 11 20.2170539857
6800 12 21.2707923171
7200 13 22.3225041738
8000 14 24.4398103303
8800 16 26.5655498741
9600 18 28.6909862209

10400 19 30.8286471872
11200 21 32.9758854642
12000 23 35.1267309467
12800 25 37.2826286944
13600 26 39.4490958952
14000 27 40.5358149646
14400 28 41.6237031114
15200 30 43.803200207
16000 32 45.9878564483
16800 34 48.1777477365
17600 36 50.3728208125
18400 37 52.5751393369
19200 39 54.7829634873
20000 41 56.9949118426
20800 43 59.2108344651
21600 45 61.4305548358
22400 47 63.6538811787
24000 51 68.110554352
25600 55 72.5792666499
26400 57 74.8176604971
27200 58 77.0594474999
28000 60 79.3035263707
28800 62 81.5496297584
29600 64 83.7976212592

Table A.13: Bits of security for given values of 𝑁 and optimal values of 𝑡 when 𝑞 = 7,
𝐷 = 2.
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Appendix B

Cover-Free Sets Data

In Section 5.2.1, we discussed how we estimated the bits of security given for values

of 𝑞, 𝑆, and 𝑣. The data we generated is below.
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S v Bits of Security
10 5 6.9772799235
12 6 8.85174904142
14 7 10.7448338375
16 8 12.6517244331
18 9 14.5692622729
20 10 16.4952616915
22 11 18.4281474956
24 12 20.3667469509
26 13 22.3101634226
28 14 24.2576960027
30 15 26.2087864022
32 16 28.1629827126
34 17 30.1199139907
36 18 32.0792720062
38 19 34.0407978584
40 20 36.0042719824
42 21 37.9695065642
44 22 39.9363397003
46 23 41.9046308405
48 24 43.8742571915
50 25 45.8451108458
52 26 47.8170964697
54 27 49.7901294221
56 28 51.7641342135
58 29 53.7390432326
60 30 55.7147956863
62 31 57.6913367135
64 32 59.668616637
66 33 61.6465903307
68 34 63.6252166799
70 35 65.6044581197
72 36 67.5842802378
74 37 69.564651431
76 38 71.5455426081
78 39 73.5269269299
80 40 75.5087795832
82 41 77.4910775815
84 42 79.47379959
86 43 81.4569257715
88 44 83.4404376487

Table B.1: Bits of security for 𝑆 and optimal values of 𝑣, for 𝑞 = 2.
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S v Bits of Security
30 8 8.81267574049
36 9 11.0027863492
42 11 13.194647269
48 12 15.3772726547
54 14 17.5747476782
57 15 18.6664593676
60 16 19.754540022
63 16 20.8557591955
66 17 21.9539943639
72 19 24.1395490169
78 20 26.3327803307
84 22 28.5225089661
90 23 30.7112894592
96 25 32.9041797852

102 26 35.0896192688
108 28 37.2849869549
111 29 38.3791883051
114 30 39.4713421692
117 30 40.5676449915
120 31 41.6651872684
120 31 41.6651872684
126 33 43.8541729993
132 34 46.0449448923
138 36 48.2361307811
144 37 50.4243696764
150 39 52.6174225852
156 41 54.8041042011
162 42 56.9981947921
168 44 59.1868015855
174 45 61.3785538101
180 47 63.5688479167
186 48 65.7585788479
192 50 67.9503636826
198 51 70.1383300835
204 53 72.3314413658
210 55 74.5198182511
216 56 76.7121531338
222 58 78.9018984588
228 59 81.0925561271
234 61 83.2835402957

Table B.2: Bits of security for 𝑆 and optimal values of 𝑣, for 𝑞 = 3.
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S v Bits of Security
40 7 6.69019521984
50 9 9.02855097372
60 11 11.3750967355
70 12 13.727985077
80 14 16.0906335508
90 16 18.4521182656
95 17 19.6325179025

100 18 20.8127290679
105 19 21.9927768278
110 20 23.1726828492
120 22 25.5321417161
130 24 27.8912254976
140 26 30.250022245
150 27 32.6120117619
160 29 34.9749039138
170 31 37.3370772069
175 32 38.5179368301
180 33 39.6986636834
185 34 40.8792696496
190 35 42.0597652486
200 37 44.4204617052
210 39 46.780816382
220 40 49.1410568241
230 42 51.504094821
240 44 53.8666257428
250 46 56.2287152998
260 48 58.5904183553
270 50 60.951781069
280 52 63.3128425527
290 54 65.673636163
300 55 68.0351533899
310 57 70.3978319974
320 59 72.7601602537
330 61 75.1221721228
340 63 77.4838973248
350 65 79.8453619778
360 67 82.2065891262
370 69 84.5675991797

Table B.3: Bits of security for 𝑆 and optimal values of 𝑣, for 𝑞 = 4.
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S v Bits of Security
50 6 5.46937983582
64 8 7.85271157004
78 10 10.2621395532
92 12 12.6878311125

106 14 15.1235651325
120 16 17.5655424473
127 17 18.7881102811
134 18 20.0114530319
141 19 21.2354181136
155 22 23.6848964451
169 24 26.1375397755
183 26 28.5907917115
197 28 31.0444507323
211 30 33.4983905376
225 32 35.9525305208
239 34 38.4068181179
246 35 39.6340058052
253 36 40.8612181864
260 37 42.0884525388
267 38 43.3157065692
281 40 45.77026616
300 43 49.1007179951
310 44 50.85452541
320 46 52.6070991916
330 47 54.3616306821
340 49 56.1136076156
350 50 57.8687694343
360 52 59.6202231057
370 53 61.375938495
380 54 63.1278427275
390 56 64.8831350989
400 57 66.6357081024
410 59 68.3903567622
420 60 70.1435296364
430 62 71.8976012336
440 63 73.6513151206
450 65 75.4048664716
460 66 77.1590707029
470 68 78.9121506286
480 69 80.6668012813
490 71 82.4194520374

Table B.4: Bits of security for 𝑆 and optimal values of 𝑣, for 𝑞 = 5.
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S v Bits of Security
60 6 4.65846359932
80 8 7.30752195491

100 10 9.99568401724
120 13 12.7226319224
140 15 15.4744228095
160 17 18.2310190476
170 19 19.619729029
180 20 21.008835037
190 21 22.3974337711
200 22 23.7855575144
220 25 26.568133489
240 27 29.3547457171
260 30 32.138711347
280 32 34.9306645439
300 34 37.7187760619
320 37 40.5098698003
340 39 43.3011847658
360 42 46.0908370358
380 44 48.8844132815
400 46 51.6748434416
420 49 54.4681265805
440 51 57.2603914667
460 54 60.0521659632
480 56 62.8459069657
500 58 65.6371208084
520 61 68.4314042872
540 63 71.2239443758
560 66 74.0168967011
580 68 76.8105647955
600 71 79.6023937488
620 73 82.3970328148
640 75 85.1896613282

Table B.5: Bits of security for 𝑆 and optimal values of 𝑣, for 𝑞 = 6.
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S v Bits of Security
100 8 7.30571083232
120 10 9.50421831578
140 12 11.7319149869
160 14 13.9822130489
180 16 16.2495594026
200 18 18.5296691895
210 19 19.6734717769
220 20 20.8193309744
230 21 21.9669726153
240 22 23.1161607396
260 24 25.4183920382
280 26 27.7247142078
300 28 30.0341520203
320 30 32.3459773081
340 32 34.6596442984
360 34 36.9747422712
380 36 39.2909608201
400 39 41.6088661402
420 41 43.927667836
440 43 46.2469409676
460 45 48.5665931552
480 47 50.8865532537
500 49 53.2067661194
520 51 55.5271887124
540 53 57.8477871864
560 55 60.1685347104
580 57 62.4894098314
600 59 64.8103952425
620 61 67.1314768514
640 63 69.4526430743
660 65 71.7738842981
680 67 74.0951924696
700 69 76.4165607799
720 71 78.7379834206
740 73 81.0594553947
760 75 83.380972369

Table B.6: Bits of security for 𝑆 and optimal values of 𝑣, for 𝑞 = 7.
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Appendix C

Experiments Data

We include the data used to generate the graphs in Section 5.1.3. This data gives the

running times for the algorithms in a scheme and the key and ciphertext sizes, for

different sets of inputs. All times in the tables are in milliseconds, and averaged over

10 runs. All sizes in the tables are in bytes.
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p Bits Setup KeyGen Encrypt Decrypt
131 8 1.54998 0.0575747 3.973061 0.7194238
257 9 1.315528 0.0468375 3.558248 0.8388754
521 10 1.349419 0.046637 3.81149 0.989154

1,031 11 1.468602 0.0515353 4.547757 1.130014
2,053 12 1.654349 0.0543424 5.191734 1.315738
4,099 13 1.811205 0.0656911 6.421297 1.505172
8,209 14 2.22609 0.0785932 8.275854 1.710654

16,411 15 2.460622 0.0938597 8.258913 1.93491
32,771 16 2.957742 0.1005343 8.709874 2.129492
65,537 17 2.6628 0.0960014 10.113635 2.329285

131,101 18 2.363391 0.0998176 11.92076 2.543564
262,147 19 2.977107 0.1068233 11.86837 2.765922
524,309 20 3.142816 0.102723 11.408775 2.876541

1,048,583 21 3.298215 0.1304621 13.47584 3.081963
2,097,169 22 3.34881 0.1158222 14.10905 3.296371
4,194,319 23 3.729242 0.1254665 14.48263 3.536734
8,388,617 24 3.661746 0.1236207 15.78591 3.770024

16,777,259 25 3.594331 0.1279305 15.8602 4.116024
33,554,467 26 4.224878 0.1447126 18.32285 4.360517
67,108,879 27 4.182325 0.1401668 18.22762 4.539007

134,217,757 28 4.443883 0.1509604 19.04844 4.755402
268,435,459 29 4.855381 0.1489859 19.069 5.056261
536,870,923 30 4.570328 0.1600769 20.88948 5.318429

1,073,741,827 31 4.61533 0.1605114 21.02819 5.569664

Table C.1: One-key SS running times for different primes, with AES, inner product
mod p circuits, for length 10 vectors.
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MSK/MPK FK CT
p Bits size keys size size

131 8 2,964 160 1,527 1,802,437
257 9 3,334 180 1,717 2,245,862
521 10 3,704 200 1,907 2,737,982

1,031 11 4,074 220 2,097 3,278,769
2,053 12 4,444 240 2,287 3,882,973
4,099 13 4,814 260 2,477 4,600,470
8,209 14 5,184 280 2,667 5,355,466

16,411 15 5,554 300 2,857 6,164,132
32,771 16 5,924 320 3,047 7,026,308
65,537 17 6,294 340 3,237 7,942,268

131,101 18 6,664 360 3,427 8,911,894
262,147 19 7,034 380 3,617 9,934,916
524,309 20 7,404 400 3,807 11,011,798

1,048,583 21 7,774 420 3,997 12,142,352
2,097,169 22 8,144 440 4,187 13,326,178
4,194,319 23 8,514 460 4,377 14,563,938
8,388,617 24 8,884 480 4,567 15,855,268

16,777,259 25 9,254 500 4,757 17,200,172
33,554,467 26 9,624 520 4,947 18,598,500
67,108,879 27 9,994 540 5,137 20,050,568

134,217,757 28 10,364 560 5,327 21,556,272
268,435,459 29 10,734 580 5,517 23,115,586
536,870,923 30 11,104 600 5,707 24,728,404

1,073,741,827 31 11,474 620 5,897 26,395,026

Table C.2: One-key SS key and ciphertext sizes for different primes, with AES, inner
product mod p circuits, for length 10 vectors.
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Length Setup KeyGen Encrypt Decrypt
1 0.3231109 0.0171254 0.6708636 0.1746067

10 2.067322 0.0760288 6.340851 1.0319108
100 18.19843 0.5166602 37.82729 9.001745
200 35.48751 1.103201 74.2556 17.46849
300 52.73668 1.616318 109.3812 25.68324
400 68.69153 2.169415 146.9187 34.00203
500 84.4547 2.724473 182.5585 42.54663
600 101.51309 3.295232 219.8117 50.86044
700 119.3168 3.841888 255.4038 59.0062
800 134.4381 4.458252 292.9937 67.22722
900 150.4773 4.965566 329.7012 75.25928

1000 166.1338 5.601995 364.6297 84.24207
1100 180.5705 6.190041 397.4624 91.91721
1200 197.7791 6.775606 434.0631 100.65667
1300 213.0395 7.37893 470.9584 108.842
1400 226.997 7.911448 504.0103 117.2579
1500 244.4314 8.436557 541.1995 125.6439
1600 259.6933 9.004056 582.6269 133.9788
1700 278.3793 9.59012 613.0953 143.7887
1800 293.8813 10.26022 649.9419 151.8099
1900 311.357 10.80076 687.2063 160.6146
2000 325.8608 11.36094 724.762 168.8667
2200 360.9447 12.58547 807.7214 188.3495
2400 393.9359 13.85137 871.68 203.2647
2600 423.1235 14.90914 940.8234 219.5653
2800 457.8521 15.93526 1010.5493 236.0999
3000 499.2364 17.56474 1176.976 313.0198
3500 579.1119 20.57632 1280.37 378.9645
4000 662.6899 23.5416 1483.417 440.1461
4500 752.1038 26.26344 1660.821 544.7547
5000 808.9792 29.31875 1797.417 420.402
5500 883.9193 31.34131 1969.747 498.1895
6000 966.8491 33.69098 2145.656 534.0587
6500 1050.667 36.41234 2341.536 564.1144
7000 1125.326 39.51572 2494.641 614.0581
7500 1197.601 43.7912 2665.178 841.2505
8000 1268.571 45.26792 2851.259 879.0184
8500 1353.779 47.98199 3022.119 926.7474
9000 1430.911 50.57167 3216.517 1555.995
9500 1508.327 53.28335 3477.339 1673.2

10000 1624.991 57.13813 3577.108 1386.663

Table C.3: One-key SS running times for different length vectors, with AES, inner
product mod 8123 circuits.
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MSK/MPK FK CT
Length size keys size size

1 483 26 250 100,732
10 4,814 260 24,77 1,036,937

100 48,104 2,600 24,707 12,938,677
200 96,204 5,200 49,407 26,243,739
300 144,304 7,800 74,107 39,548,961
400 192,404 10,400 98,807 52,854,045
500 240,504 13,000 123,507 66,159,247
600 288,604 15,600 148,207 79,464,309
700 336,704 18,200 172,907 92,769,541
800 384,804 20,800 197,607 106,074,625
900 432,904 23,400 222,307 119,379,845

1000 481,004 26,000 247,007 132,684,941
1100 529,104 28,600 271,707 145,990,151
1200 577,204 31,200 296,407 159,295,257
1300 625,304 33,800 321,107 172,600,457
1400 673,404 36,400 345,807 185,905,541
1500 721,504 39,000 370,507 199,210,761
1600 769,604 41,600 395,207 212,515,825
1700 817,704 44,200 419,907 225,821,021
1800 865,804 46,800 444,607 239,126,109
1900 913,904 49,400 469,307 252,431,307
2000 962,004 52,000 494,007 265,736,411
2200 1,058,204 57,200 543,407 292,346,717
2400 1,154,404 62,400 592,807 318,957,023
2600 1,250,604 67,600 642,207 350,491,537
2800 1,346,804 72,800 691,607 377,594,337
3000 1,443,004 78,000 741,007 404,697,137
3500 1,683,504 91,000 864,507 472,454,137
4000 1,924,004 104,000 988,007 540,211,137
4500 2,164,504 117,000 1,111,507 607,968,137
5000 2,405,004 130,000 1,235,007 675,725,137
5500 2,645,506 143,000 1,358,511 743,625,293
6000 2,886,006 156,000 1,482,011 811,538,293
6500 3,126,506 169,000 1,605,511 879,451,293
7000 3,367,006 182,000 1,729,011 947,364,293
7500 3,607,506 195,000 1,852,511 1,015,277,293
8000 3,848,006 208,000 1,976,011 1,083,190,293
8500 4,088,506 221,000 2,099,511 1,151,103,293
9000 4,329,006 234,000 2,223,011 1,219,016,293
9500 4,569,506 247,000 2,346,511 1,286,929,293

10000 4,810,006 260,000 2,470,011 1,354,842,293

Table C.4: One-key SS key and ciphertext sizes for different length vectors, with AES,
inner product mod 8123 circuits.
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